首页> 外文期刊>Expert systems with applications >Feedforward neural network position control of a piezoelectric actuator based on a BAT search algorithm
【24h】

Feedforward neural network position control of a piezoelectric actuator based on a BAT search algorithm

机译:基于BAT搜索算法的压电执行器前馈神经网络位置控制。

获取原文
获取原文并翻译 | 示例

摘要

The precise positional controls of piezoelectric actuators (PEA) are problematic due to highly-nonlinear hysteresis behavior which is inherent in piezoelectric materials. In existing PEA positional control applications that are based only on neural networks, the obtained control response results are insufficient for practical usage. In this paper we apply a combined approach by using a feedforward neural network (FNN) jointly with a BAT search algorithm in order to improve the positional control of an X-PEA mechanism model by also taking into account the hysteresis behavior. The proposed positional controller was successfully implemented and it was capable of significantly improving the overall control response result of an X-PEA mechanism model by minimizing the overshoot value and steady-state error, and decreasing the settling time. In addition, the BAT search algorithm can also be used for training the FNN, optimizing the FNN topology and reducing the computational complexity. The presented simulation results confirmed that the proposed positional controller with combined approach provides better results compared to the classical FNN control approach. (C) 2015 Elsevier Ltd. All rights reserved.
机译:压电执行器(PEA)的精确位置控制由于压电材料固有的高度非线性磁滞行为而存在问题。在仅基于神经网络的现有PEA位置控制应用中,获得的控制响应结果不足以用于实际应用。在本文中,我们通过结合使用前馈神经网络(FNN)和BAT搜索算法来应用组合方法,以通过考虑滞后行为来改善X-PEA机制模型的位置控制。所提出的位置控制器已成功实施,并且能够通过最小化过冲值和稳态误差并减少建立时间来显着改善X-PEA机构模型的整体控制响应结果。此外,BAT搜索算法还可用于训练FNN,优化FNN拓扑并降低计算复杂性。给出的仿真结果证实,与传统的FNN控制方法相比,所提出的具有组合方法的位置控制器可提供更好的结果。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号