首页> 外文期刊>Expert Systems with Application >Solution methods for scheduling of heterogeneous parallel machines applied to the workover rig problem
【24h】

Solution methods for scheduling of heterogeneous parallel machines applied to the workover rig problem

机译:用于修井机问题的异构并行机调度的解决方法

获取原文
获取原文并翻译 | 示例

摘要

We take into account a parallel heterogenous machine scheduling problem arising in maintenance planning of heterogeneous wells. This problem particularly arises in the context of workover rig scheduling. The oil wells need regular maintenance to ensure an optimal level of production. After oil production being decreased at some wells, appropriate workover rigs with compatible service capacity, are deployed to serve the wells at discrete locations. Every well needs a certain level of maintenance and rehabilitation services that can only be offered by compatible workover rigs. A new mixed integer linear programming model is propose for this problem that is an arc-time-indexed formulation. We propose a heuristic selection type hyper-heuristic algorithm, which is guided by a learning mechanism resulting in a clever choice of moves in the space of heuristics that are applied to solve the problem. The output is then used to warm start a branch, price and cut algorithm. Our numerical experiments are conducted on instances of a case study of Petrobras, the Brazilian National Petroleum Corporation. The computational experiments prove the efficiency of our hyper-heuristic in searching the right part of the search space using the right alternation among different heuristics and confirms the high quality of solutions obtained by our hyperheuristic. (C) 2015 Elsevier Ltd. All rights reserved.
机译:我们考虑了异构井维护计划中出现的并行异构机器调度问题。特别是在修井机调度中会出现此问题。油井需要定期维护以确保最佳生产水平。在某些井的采油量减少之后,将部署具有兼容服务能力的合适的修井机,以在离散位置为井提供服务。每口井都需要一定水平的维护和修复服务,只有兼容的修井设备才能提供这些服务。针对此问题,提出了一种新的混合整数线性规划模型,该模型是弧时间索引公式。我们提出了一种启发式选择类型的超启发式算法,该算法以一种学习机制为指导,从而在启发式空间中巧妙地选择了用于解决问题的移动。然后将输出用于热启动分支,价格和削减算法。我们的数值实验是基于巴西国家石油公司Petrobras的案例研究进行的。计算实验证明了我们的超启发式算法在不同启发式算法之间使用正确的交替来搜索搜索空间的正确部分的效率,并证实了我们的超启发式算法获得的高质量解。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号