首页> 外文期刊>Expert Systems with Application >Binary tree optimization using genetic algorithm for multiclass support vector machine
【24h】

Binary tree optimization using genetic algorithm for multiclass support vector machine

机译:基于遗传算法的二叉树优化多类支持向量机

获取原文
获取原文并翻译 | 示例

摘要

Support vector machine (SVM) with a binary tree architecture is popular since it requires the minimum number of binary SVM to be trained and tested. Many efforts have been made to design the optimal binary tree architecture. However, these methods usually construct a binary tree by a greedy search. They sequentially decompose classes into two groups so that they consider only local optimum at each node. Although genetic algorithm (GA) has been recently introduced in multiclass SVM for the local partitioning of the binary tree structure, the global optimization of a binary tree structure has not been tried yet. In this paper, we propose a global optimization method of a binary tree structure using GA to improve the classification accuracy of multiclass problem for SVM. Unlike previous researches on multiclass SVM using binary tree structures, our approach globally finds the optimal binary tree structure. For the efficient utilization of GA, we propose an enhanced crossover strategy to include the determination method of crossover points and the generation method of offsprings to preserve the maximum information of a parent tree structure. Experimental results showed that the proposed method provided higher accuracy than any other competing methods in 11 out of 18 datasets used as benchmark, within an appropriate time. The performance of our method for small size problems is comparable with other competing methods while more sensible improvements of the classification accuracy are obtained for the medium and large size problems. (C) 2015 Elsevier Ltd. All rights reserved.
机译:具有二叉树架构的支持向量机(SVM)很受欢迎,因为它需要训练和测试最少数量的二叉树SVM。在设计最佳的二叉树体系结构方面已经做了很多努力。但是,这些方法通常通过贪婪搜索来构造二叉树。他们依次将类分解为两组,以便它们仅考虑每个节点的局部最优。尽管最近在多类SVM中引入了遗传算法(GA)来对二叉树结构进行局部划分,但尚未尝试对二叉树结构进行全局优化。为了提高支持向量机的多类问题分类精度,本文提出了一种基于遗传算法的二叉树结构全局优化方法。与先前关于使用二叉树结构的多类SVM的研究不同,我们的方法在全球范围内找到最佳的二叉树结构。为了有效利用遗传算法,我们提出了一种增强的交叉策略,包括交叉点的确定方法和后代的生成方法,以保留父树结构的最大信息。实验结果表明,在适当的时间内,在18个数据集中用作基准的11个数据集中,该方法提供了比其他任何竞争方法更高的准确性。我们针对小尺寸问题的方法的性能可与其他竞争方法相媲美,而针对中型和大尺寸问题的分类精度则得到了更明智的提高。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号