首页> 外文期刊>Expert Systems with Application >Business intelligence in banking: A literature analysis from 2002 to 2013 using text mining and latent Dirichlet allocation
【24h】

Business intelligence in banking: A literature analysis from 2002 to 2013 using text mining and latent Dirichlet allocation

机译:银行业务智能:2002年至2013年使用文本挖掘和潜在狄利克雷分配的文献分析

获取原文
获取原文并翻译 | 示例

摘要

This paper analyzes recent literature in the search for trends in business intelligence applications for the banking industry. Searches were performed in relevant journals resulting in 219 articles published between 2002 and 2013. To analyze such a large number of manuscripts, text mining techniques were used in pursuit for relevant terms on both business intelligence and banking domains. Moreover, the latent Dirichlet allocation modeling was used in order to group articles in several relevant topics. The analysis was conducted using a dictionary of terms belonging to both banking and business intelligence domains. Such procedure allowed for the identification of relationships between terms and topics grouping articles, enabling to emerge hypotheses regarding research directions. To confirm such hypotheses, relevant articles were collected and scrutinized, allowing to validate the text mining procedure. The results show that credit in banking is clearly the main application trend, particularly predicting risk and thus supporting credit approval or denial. There is also a relevant interest in bankruptcy and fraud prediction. Customer retention seems to be associated, although weakly, with targeting, justifying bank offers to reduce churn. In addition, a large number of articles focused more on business intelligence techniques and its applications, using the banking industry just for evaluation, thus, not clearly acclaiming for benefits in the banking business. By identifying these current research topics, this study also highlights opportunities for future research.
机译:本文分析了最近的文献,以寻找银行业商业智能应用的趋势。在相关期刊中进行搜索,结果在2002年至2013年期间发表了219篇文章。为了分析如此大量的手稿,使用文本挖掘技术在商业智能和银行领域寻求相关术语。此外,使用潜在的Dirichlet分配建模是为了将文章分为几个相关主题。使用属于银行和商业智能领域的术语词典进行了分析。这种程序可以识别术语和主题分组文章之间的关系,从而可以得出有关研究方向的假设。为了证实这些假设,收集并审查了相关文章,从而验证了文本挖掘程序。结果表明,银行信贷显然是主要的应用趋势,尤其是预测风险并因此支持信贷批准或拒绝。破产和欺诈预测也引起了人们的关注。客户保留似乎与目标定位相关联,尽管程度较弱,但可以证明银行提出减少客户流失的报价是合理的。另外,大量文章更多地关注商业智能技术及其应用,仅将银行业用于评估,因此,并没有明确地称赞银行业的好处。通过确定这些当前的研究主题,本研究还突出了未来研究的机会。

著录项

  • 来源
    《Expert Systems with Application》 |2015年第3期|1314-1324|共11页
  • 作者单位

    Business Research Unit (UNIDE-IUL), Department of Information Science and Technology, ISCTE - University Institute of Lisbon, 1649-026 Lisbon, Portugal;

    ALGORITMI Research Centre, Department of Information Systems, University of Minho, 4800-058 Guimaraes, Portugal;

    Business Research Unit (BRU-UNIDE), ISCTE - University Institute of Lisbon, 1649-026 Lisbon, Portugal;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Banking; Business intelligence; Data mining; Text mining; Decision support systems;

    机译:银行业;商业智能;数据挖掘;文本挖掘;决策支持系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号