首页> 外文期刊>Expert Systems with Application >RecomMetz: A context-aware knowledge-based mobile recommender system for movie showtimes
【24h】

RecomMetz: A context-aware knowledge-based mobile recommender system for movie showtimes

机译:RecomMetz:用于电影放映时间的基于上下文的知识型移动推荐系统

获取原文
获取原文并翻译 | 示例

摘要

Recommender systems are used to provide filtered information from a large amount of elements. They provide personalized recommendations on products or services to users. The recommendations are intended to provide interesting elements to users. Recommender systems can be developed using different techniques and algorithms where the selection of these techniques depends on the area in which they will be applied. This paper proposes a recommender system in the leisure domain, specifically in the movie showtimes domain. The system proposed is called RecomMetz, and it is a context-aware mobile recommender system based on Semantic Web technologies. In detail, a domain ontology primarily serving a semantic similarity metric adjusted to the concept of "packages of single items" was developed in this research. In addition, location, crowd and time were considered as three different kinds of contextual information in RecomMetz. In a nutshell, RecomMetz has unique features: (1) the items to be recommended have a composite structure (movie theater + movie + showtime), (2) the integration of the time and crowd factors into a context-aware model, (3) the implementation of an ontology-based context modeling approach and (4) the development of a multi-platform native mobile user interface intended to leverage the hardware capabilities (sensors) of mobile devices. The evaluation results show the efficiency and effectiveness of the recommendation mechanism implemented by RecomMetz in both a cold-start scenario and a no cold-start scenario.
机译:推荐系统用于提供来自大量元素的过滤信息。他们向用户提供有关产品或服务的个性化建议。这些建议旨在为用户提供有趣的元素。可以使用不同的技术和算法来开发推荐系统,其中这些技术的选择取决于它们将应用的领域。本文提出了一种休闲领域的推荐系统,尤其是在电影放映时间领域。提出的系统称为RecomMetz,它是基于语义Web技术的上下文感知移动推荐系统。详细地,在本研究中开发了主要服务于语义相似性度量的领域本体,该语义相似度量被调整为“单个项目的包装”的概念。此外,在RecomMetz中,位置,人群和时间被认为是三种不同的上下文信息。简而言之,RecomMetz具有独特的功能:(1)推荐的项目具有复合结构(电影院+电影+放映时间),(2)将时间和人群因素整合到上下文感知模型中,(3 )基于本体的上下文建模方法的实现;(4)旨在利用移动设备的硬件功能(传感器)的多平台本地移动用户界面的开发。评估结果表明,RecomMetz在冷启动方案和无冷启动方案中实施推荐机制的效率和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号