首页> 外文期刊>Expert Systems with Application >A semi-supervised fuzzy GrowCut algorithm to segment and classify regions of interest of mammographic images
【24h】

A semi-supervised fuzzy GrowCut algorithm to segment and classify regions of interest of mammographic images

机译:一种半监督模糊GrowCut算法,对乳房X线照片的感兴趣区域进行分割和分类

获取原文
获取原文并翻译 | 示例

摘要

According to the World Health Organization, breast cancer is the most common form of cancer in women. It is the second leading cause of death among women round the world, becoming the most fatal form of cancer. Despite the existence of several imaging techniques useful to aid at the diagnosis of breast cancer, x-ray mammography is still the most used and effective imaging technology. Consequently, mammographic image segmentation is a fundamental task to support image analysis and diagnosis, taking into account shape analysis of mammary lesions and their borders. However, mammogram segmentation is a very hard process, once it is highly dependent on the types of mammary tissues. The GrowCut algorithm is a relatively new method to perform general image segmentation based on the selection of just a few points inside and outside the region of interest, reaching good results at difficult segmentation cases when these points are correctly selected. In this work we present a new semi-supervised segmentation algorithm based on the modification of the GrowCut algorithm to perform automatic mammographic image segmentation once a region of interest is selected by a specialist. In our proposal, we used fuzzy Gaussian membership functions to modify the evolution rule of the original GrowCut algorithm, in order to estimate the uncertainty of a pixel being object or background. The main impact of the proposed method is the significant reduction of expert effort in the initialization of seed points of GrowCut to perform accurate segmentation, once it removes the need of selection of background seeds. Furthermore, the proposed method is robust to wrong seed positioning and can be extended to other seed based techniques. These characteristics have impact on expert and intelligent systems, once it helps to develop a segmentation method with lower required specialist knowledge, being robust and as efficient as state of the art techniques. We also constructed an automatic point selection process based on the simulated annealing optimization method, avoiding the need of human intervention. The proposed approach was qualitatively compared with other state-of-the-art segmentation techniques, considering the shape of segmented regions. In order to validate our proposal, we built an image classifier using a classical multilayer perceptron. We used Zernike moments to extract segmented image features. This analysis employed 685 mammograms from IRMA breast cancer database, using fat and fibroid tissues. Results show that the proposed technique could achieve a classification rate of 91.28% for fat tissues, evidencing the feasibility of our approach. (C) 2016 Elsevier Ltd. All rights reserved.
机译:根据世界卫生组织,乳腺癌是女性最常见的癌症形式。它是全世界女性中第二大死亡原因,成为最致命的癌症形式。尽管存在几种有助于乳腺癌诊断的成像技术,但X射线乳房摄影仍是最常用和最有效的成像技术。因此,考虑到乳腺病变及其边界的形状分析,乳腺X线图像分割是支持图像分析和诊断的一项基本任务。然而,一旦高度依赖于乳腺组织的类型,乳房X线照片分割是一个非常困难的过程。 GrowCut算法是一种相对较新的方法,它基于对感兴趣区域内外仅几个点的选择来执行常规图像分割,在正确选择这些点的困难分割情况下,可以达到良好的效果。在这项工作中,我们提出了一种新的半监督分割算法,该算法基于对GrowCut算法的修改,一旦专家选择了感兴趣的区域,就可以执行自动乳房X线图像分割。在我们的建议中,我们使用模糊高斯隶属函数来修改原始GrowCut算法的演化规则,以估计像素是对象还是背景的不确定性。提出的方法的主要影响是,一旦消除了选择背景种子的需求,GrowCut种子点初始化中执行精确分割的专家工作就会大大减少。此外,所提出的方法对于错误的种子定位是鲁棒的,并且可以扩展到其他基于种子的技术。这些特性一旦有助于开发出所需专业知识水平较低的细分方法,且具有与最新技术一样强大且高效的特性,便会对专家和智能系统产生影响。我们还基于模拟退火优化方法构造了自动点选择过程,从而避免了人工干预。考虑到分割区域的形状,将所提出的方法与其他最新的分割技术进行了定性比较。为了验证我们的建议,我们使用经典的多层感知器构建了图像分类器。我们使用Zernike矩提取分段图像特征。该分析使用来自IRMA乳腺癌数据库的685个乳房X线照片,使用脂肪和肌瘤组织。结果表明,所提出的技术可以对脂肪组织实现91.28%的分类率,证明了我们方法的可行性。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号