首页> 外文期刊>Expert Systems with Application >A two-stage adaptive fruit fly optimization algorithm for unrelated parallel machine scheduling problem with additional resource constraints
【24h】

A two-stage adaptive fruit fly optimization algorithm for unrelated parallel machine scheduling problem with additional resource constraints

机译:具有附加资源约束的不相关并行机调度问题的两阶段自适应果蝇优化算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an unrelated parallel machine scheduling problem with additional resource constraints (UPMSP_RC) from the real world manufacturing systems is studied. With the objective of minimizing the makespan, a mixed integer linear programming model is presented and several properties are analyzed. Furthermore, a two-stage adaptive fruit fly optimization algorithm (TAFOA) is proposed to solve the UPMSP_RC. At the first stage, a heuristic is proposed to generate an initial solution with high quality. At the second stage, the initial solution is adopted as the initial swarm center for further evolution. During the evolution, the search manners are selected adaptively with the guidance of the problem-specific knowledge, which is a sufficient condition of the best schedule under a given job-to-machine assignment. Moreover, the effect of parameters on the performance of the TAFOA is investigated by using the two factor analysis of variance (ANOVA). Finally, extensive numerical comparisons are carried out to show the effectiveness of the TAFOA in solving the UPMSP_RC. (C) 2016 Elsevier Ltd. All rights reserved.
机译:本文研究了来自实际制造系统的具有附加资源约束(UPMSP_RC)的无关并行机器调度问题。为了最小化制造期,提出了混合整数线性规划模型,并分析了一些特性。此外,提出了一种两阶段自适应果蝇优化算法(TAFOA)来解决UPMSP_RC问题。在第一阶段,提出一种启发式方法以生成高质量的初始解决方案。在第二阶段,采用初始解决方案作为进一步发展的初始群体中心。在进化过程中,在特定于问题的知识的指导下自适应地选择搜索方式,这是在给定的作业到机器分配下最佳计划的充分条件。此外,通过使用方差两因素分析(ANOVA)研究了参数对TAFOA性能的影响。最后,进行了广泛的数值比较,以显示TAFOA在解决UPMSP_RC方面的有效性。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号