首页> 外文期刊>Expert Systems with Application >Discovering users with similar internet access performance through cluster analysis
【24h】

Discovering users with similar internet access performance through cluster analysis

机译:通过集群分析发现具有类似Internet访问性能的用户

获取原文
获取原文并翻译 | 示例

摘要

Users typically subscribe to an Internet access service on the basis of a specific download speed, but the actual service may differ. Several projects are active collecting internet access performance measurements on a large scale at the end user location. However, less attention has been devoted to analyzing such data and to inform users on the received services. This paper presents MIND, a cluster-based methodology to analyze the characteristics of periodic Internet measurements collected at the end user location. MiND allows to discover (i) groups of users with a similar Internet access behavior and (ii) the (few) users with somehow anomalous service. User measurements over time have been modeled through histograms and then analyzed through a new two-level clustering strategy. MiND has been evaluated on real data collected by Neubot, an open source tool, voluntary installed by users, that periodically collects Internet measurements. Experimental results show that the majority of users can be grouped into homogeneous and cohesive clusters according to the Internet access service that they receive in practice, while a few users receiving anomalous services are correctly identified as outliers. Both users and ISPs can benefit from such information: users can constantly monitor the ISP offered service, whereas ISPs can quickly identify anomalous behaviors in their offered services and act accordingly. (C) 2016 Elsevier Ltd. All rights reserved.
机译:用户通常根据特定的下载速度来订阅Internet访问服务,但是实际服务可能有所不同。有几个项目正在积极收集最终用户位置的大规模Internet访问性能度量。但是,人们很少关注分析此类数据并通知用户所接收的服务。本文介绍了MIND,这是一种基于群集的方法,用于分析在最终用户位置收集的定期Internet测量的特征。 MiND允许发现(i)具有类似Internet访问行为的用户组,以及(ii)具有某种异常服务的(很少)用户。通过柱状图对用户随时间的测量进行建模,然后通过新的两级聚类策略进行分析。对MiND的评估是根据Neubot收集的真实数据进行评估的,Neubot是一种由用户自愿安装的开源工具,该工具会定期收集Internet度量。实验结果表明,大多数用户可以根据他们在实践中收到的Internet访问服务分组为同质和紧密联系的集群,而少数接收到异常服务的用户则被正确地识别为离群值。用户和ISP都可以从此类信息中受益:用户可以不断监视ISP提供的服务,而ISP可以快速识别其提供的服务中的异常行为并采取相应的措施。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号