首页> 外文期刊>Expert Systems with Application >A fast learning method for streaming and randomly ordered multi-class data chunks by using one-pass-throw-away class-wise learning concept
【24h】

A fast learning method for streaming and randomly ordered multi-class data chunks by using one-pass-throw-away class-wise learning concept

机译:一种通过一次性丢弃类学习概念的流式传输和随机排序的多类数据块的快速学习方法

获取原文
获取原文并翻译 | 示例

摘要

Presently, the amount of data occurring in several business and academic areas such as ATM transactions, web searches, and sensor data are tremendously and continuously increased. Classifying as well as recognizing patterns among these data in a limited memory space complexity are very challenging. Various incremental learning methods have proposed to achieve highly accurate results but both already learned data and new incoming data must be retained throughout the learning process, causing high space and time complexities. In this paper, a new neural learning method based on radial-shaped function and discard-after-learn concept in the data streaming environment was proposed to reduce the space and time complexities. The experimental results showed that the proposed method used 1 to 95 times fewer neurons and 1.2 to 2,700 times faster than the results produced by MLP, RBF, SVM, VEBF, ILVQ ASC, and other incremental learning methods. It is also robust to the incoming order of data chunks. (C) 2016 Elsevier Ltd. All rights reserved.
机译:当前,在诸如ATM交易,Web搜索和传感器数据之类的几个业务和学术领域中发生的数据量正在极大地且持续增加。在有限的存储空间复杂度下,在这些数据之间进行分类和识别模式非常具有挑战性。已经提出了各种增量学习方法来获得高度准确的结果,但是在整个学习过程中必须保留已经学习的数据和新输入的数据,这导致了很高的空间和时间复杂性。提出了一种基于径向函数和学习后丢弃概念的神经网络学习方法,以减少数据空间和时间的复杂性。实验结果表明,与MLP,RBF,SVM,VEBF,ILVQ ASC和其他增量学习方法产生的结果相比,拟议的方法使用的神经元少1至95倍,速度快1.2至2,700倍。它对于数据块的传入顺序也很可靠。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号