首页> 外文期刊>Expert Systems with Application >Soft-sensing estimation of plant effluent concentrations in a biological wastewater treatment plant using an optimal neural network
【24h】

Soft-sensing estimation of plant effluent concentrations in a biological wastewater treatment plant using an optimal neural network

机译:使用最佳神经网络的软传感估算生物废水处理厂中工厂废水的浓度

获取原文
获取原文并翻译 | 示例

摘要

Recent studies into the estimation and control of an activated sludge process (ASP) at a wastewater treatment plant suggest that artificial-intelligence methods, such as neural networks, fuzzy systems and genetic algorithms, can improve the plant performance in terms of reduced operation costs and improved effluent quality. In this paper, a neural-network-based soft sensor is developed for the on-line prediction of effluent concentrations in an ASP in terms of primary hard-to-measure variables, such as chemical oxygen demand, total nitrogen content and total suspended solids, starting from secondary on-line easy to-measure variables, such as oxygen and nitrogen compound concentrations in biological tanks, input flow rate and alkalinity, among others. An algorithm based on principal component analysis is applied to select the optimal net input vectors for the soft sensor, using an appropriated number of samples of the secondary variables set. The proposed soft sensor is tested on the ASP of a large-scale municipal wastewater treatment plant running under the GPS-X simulation frame and validated with operational gathered data. Satisfactory low values for mean and maximum absolute prediction errors are obtained, even when high values of sampling time of primary variables are set, as it is frequently done during monitoring operation. In this way, data-driven soft-sensors based on neural networks can become valuable tools for plant operators for the recognition of operational states in terms of low cost and efficient prediction of primary process variables such as chemical oxygen demand, total nitrogen content and total suspended solids, therefore avoiding the acquisition of expensive and sometimes unreliable instruments for measuring nutrient concentrations in plant. (C) 2016 Elsevier Ltd. All rights reserved.
机译:最近对废水处理厂的活性污泥过程(ASP)进行估算和控制的研究表明,人工智能方法(例如神经网络,模糊系统和遗传算法)可以在降低运营成本和降低成本方面提高工厂的性能。废水质量得到改善。本文中,开发了一种基于神经网络的软传感器,用于根据主要难以测量的变量(例如化学需氧量,总氮含量和总悬浮固体)在线预测ASP中的废水浓度。 ,从二次在线易于测量的变量开始,例如生物池中的氧气和氮气化合物浓度,输入流量和碱度等。应用基于主成分分析的算法,使用适当数量的辅助变量集合的样本,为软传感器选择最佳的净输入向量。拟议中的软传感器在GPS-X模拟框架下运行的大型市政污水处理厂的ASP上进行了测试,并通过运行收集的数据进行了验证。即使设置了主要变量的采样时间的高值,也可以获得令人满意的均值和最大绝对预测误差的低值,因为在监视操作期间经常这样做。通过这种方式,基于神经网络的数据驱动软传感器可以成为工厂操作员的有价值的工具,以低成本和有效预测主要过程变量(例如化学需氧量,总氮含量和总和)的方式来识别操作状态悬浮的固体,因此避免了购买昂贵的,有时不可靠的仪器来测量植物中的营养物。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号