首页> 外文期刊>Expert Systems with Application >Dynamic driver fatigue detection using hidden Markov model in real driving condition
【24h】

Dynamic driver fatigue detection using hidden Markov model in real driving condition

机译:在实际驾驶条件下使用隐马尔可夫模型进行动态驾驶员疲劳检测

获取原文
获取原文并翻译 | 示例

摘要

Driver's states in successive time slices are not independent, especially, fatigue is one of a cognitive state that is developing over time. Meanwhile, driver fatigue is also influenced by some corresponding contextual information at a certain time. In such case, classifying driving state at each time slice separately from it in before and after time slices obviously has less meaning. Therefore, a dynamic fatigue detection model based on Hidden Markov Model (HMM) is proposed in this paper. Driver fatigue can be estimated by this model in a probabilistic way using various physiological and contextual information. Electroencephalogram (EEG), Electromyogram (EMG), and respiration signals were simultaneously recorded by wearable sensors and sent to computer by Bluetooth during the real driving. From these physiological information, fatigue likelihood can be achieved using kernel distribution estimate at different time sections. Contextual information offered by specific environmental factors were used as prior of fatigue. As time proceeds, the posterior of fatigue can be gotten dynamically by this HMM-based fatigue recognition method. Based on the results of the method in this paper, it shows that it provides an effective way in detecting driver fatigue. (C) 2016 Elsevier Ltd. All rights reserved.
机译:连续时间片中的驾驶员状态不是独立的,特别是疲劳是随着时间而发展的一种认知状态。同时,驾驶员疲劳在一定时间还受到一些相应的上下文信息的影响。在这种情况下,在时间片之前和之后将每个时间片上的驾驶状态分别与之分开进行分类显然意义不大。因此,本文提出了一种基于隐马尔可夫模型(HMM)的动态疲劳检测模型。该模型可以使用各种生理和环境信息以概率方式估计驾驶员疲劳程度。脑电图(EEG),肌电图(EMG)和呼吸信号由可穿戴式传感器同时记录,并在实际行驶中通过蓝牙发送给计算机。从这些生理信息中,可以使用不同时间段的核分布估计来实现疲劳可能性。由特定环境因素提供的上下文信息被用作疲劳的先兆。随着时间的流逝,通过基于HMM的疲劳识别方法可以动态获得疲劳的后验。基于本文方法的结果,表明该方法提供了一种检测驾驶员疲劳的有效方法。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号