首页> 外文期刊>Expert Systems with Application >Systemic banking crisis early warning systems using dynamic Bayesian networks
【24h】

Systemic banking crisis early warning systems using dynamic Bayesian networks

机译:使用动态贝叶斯网络的系统性银行危机预警系统

获取原文
获取原文并翻译 | 示例

摘要

For decades, the literature on banking crisis early-warning systems has been dominated by two methods, namely, the signal extraction and the logit model methods. However, these methods, do not model the dynamics of the systemic banking system. In this study, dynamic Bayesian networks are applied as systemic banking crisis early-warning systems. In particular, the hidden Markov model, the switching linear dynamic system and the naive Bayes switching linear dynamic system models are considered. These dynamic Bayesian networks provide the means to model system dynamics using the Markovian framework. Given the dynamics, the probability of an impending crisis can be calculated. A unique approach to measuring the ability of a model to predict a crisis is utilised. The results indicate that the dynamic Bayesian network models can provide precise early-warnings compared with the signal extraction and the logit methods. (C) 2016 Elsevier Ltd. All rights reserved.
机译:数十年来,有关银行业危机预警系统的文献主要由两种方法主导,即信号提取和logit模型方法。但是,这些方法不能对系统银行系统的动力学建模。在这项研究中,动态贝叶斯网络被用作系统性银行危机预警系统。特别地,考虑了隐马尔可夫模型,切换线性动态系统和朴素贝叶斯切换线性动态系统模型。这些动态贝叶斯网络提供了使用马尔可夫框架对系统动力学建模的方法。有了动态,就可以计算出即将发生危机的可能性。使用了一种独特的方法来衡量模型预测危机的能力。结果表明,与信号提取和对数方法相比,动态贝叶斯网络模型可以提供精确的预警。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号