首页> 外文期刊>Expert Systems with Application >A hybrid intelligent fuzzy predictive model with simulation for supplier evaluation and selection
【24h】

A hybrid intelligent fuzzy predictive model with simulation for supplier evaluation and selection

机译:带有供应商评估和选择的仿真混合智能模糊预测模型

获取原文
获取原文并翻译 | 示例

摘要

Supplier evaluation and selection constitutes a central issue in supply chain management (SCM). However, the data on which to base the corresponding choices in real life problems are often imprecise or vague, which has led to the introduction of fuzzy approaches. Predictive intelligent-based techniques, such as Artificial Neural Network (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS), have been recently applied in different research fields to model fuzzy multi-criteria decision processes where the understanding and learning of the relationships between the input and output data are the key to select suitable solutions. In this paper, a hybrid ANFIS-ANN model is proposed to assist managers in their supplier evaluation process. After aggregating the data set through the Analytical Hierarchy Process (AHP), the most influential criteria on the suppliers' performance are determined by ANFIS. Then, Multi-Layer Perceptron (MLP) is used to predict and rank the suppliers' performance based on the most effective criteria. A case study is presented to illustrate the main steps of the model and show its accuracy in prediction. A battery of parametric tests and sensitivity analyses has been implemented to evaluate the overall performance of several models based on different effective criteria combinations. (C) 2016 Elsevier Ltd. All rights reserved.
机译:供应商评估和选择是供应链管理(SCM)的中心问题。然而,现实生活中相应选择所依据的数据通常不准确或含糊,导致引入了模糊方法。最近,基于预测智能的技术(例如人工神经网络(ANN)和自适应神经模糊推理系统(ANFIS))已在不同的研究领域中应用,以对模糊多准则决策过程进行建模,在此过程中,人们可以理解和学习决策之间的关系。输入和输出数据是选择合适解决方案的关键。在本文中,提出了一种混合的ANFIS-ANN模型,以帮助管理人员进行供应商评估。在通过层次分析法(AHP)汇总数据集之后,由ANFIS确定对供应商绩效最有影响力的标准。然后,使用多层感知器(MLP)根据最有效的标准对供应商的表现进行预测和排名。进行了案例研究,以说明该模型的主要步骤并显示其预测的准确性。已经实施了一系列参数测试和敏感性分析,以基于不同的有效标准组合评估几种模型的整体性能。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号