首页> 外文期刊>Expert Systems with Application >A survey on symbolic data-based music genre classification
【24h】

A survey on symbolic data-based music genre classification

机译:基于符号数据的音乐流派分类研究

获取原文
获取原文并翻译 | 示例

摘要

Music is present in everyday life and used for a wide range of objectives. Musical databases have considerably increased in number and size over the past years, therefore, the development of accurate tools for music information retrieval (MIR) has become an important topic in computer science. The increasing theoretical advances in machine learning algorithms together with the abundance of recordings available in digital audio formats, the growing quality and accessibility of on-line symbolic music data, and availability of tools and toolboxes for the extraction of musical properties have motivated many studies on machine learning and MIR. Relevant problems in MIR include classification of songs into genres, which enables the summarization of common features (or patterns) shared by different songs. The automatic classification of music genres plays a fundamental role in the context of music indexing and retrieval:so that websites and device music engines can manage and label music content. Most studies have dealt with such an issue by extracting music characteristics from the audio content, and some have provided overviews of audio features and classification algorithms for music genre classification. However, precise high-level musical information can be extracted from symbolic data (e.g. digital music scores), known to be closely related to the way humans perceive music. A number of approaches use such musical information to process, retrieve and classify music content. This manuscript provides an overview of the most important approaches that deal with music genre classification and consider the symbolic representation of music data. Current issues inherent to such a music format, as well the main algorithms adopted for the modeling of the music feature space are presented. (C) 2016 Elsevier Ltd. All rights reserved.
机译:音乐存在于日常生活中,并用于各种各样的目标。在过去的几年中,音乐数据库的数量和规模已大大增加,因此,开发准确的音乐信息检索工具(MIR)已成为计算机科学中的重要主题。机器学习算法的理论发展日新月异,以及数字音频格式的大量录音,在线符号音乐数据的质量和可访问性不断提高,以及用于提取音乐属性的工具和工具箱的可用性,促使人们进行了许多研究。机器学习和MIR。 MIR中的相关问题包括将歌曲分类为流派,从而可以汇总不同歌曲共享的共同特征(或模式)。音乐流派的自动分类在音乐索引编制和检索中起着基本作用:网站和设备音乐引擎可以管理和标记音乐内容。大多数研究通过从音频内容中提取音乐特征来解决这一问题,并且一些研究提供了音频特征和音乐流派分类的分类算法的概述。但是,可以从符号数据(例如数字乐谱)中提取精确的高级音乐信息,这些数据已知与人类感知音乐的方式密切相关。许多方法使用这种音乐信息来处理,检索和分类音乐内容。该手稿概述了处理音乐流派分类并考虑音乐数据符号表示的最重要方法。提出了这种音乐格式固有的当前问题,以及音乐特征空间建模所采用的主要算法。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号