首页> 外文期刊>Expert Systems with Application >Convergence analysis for pure stationary strategies in repeated potential games: Nash, Lyapunov and correlated equilibria
【24h】

Convergence analysis for pure stationary strategies in repeated potential games: Nash, Lyapunov and correlated equilibria

机译:重复潜在博弈中纯平稳策略的收敛性分析:纳什,李雅普诺夫和相关均衡

获取原文
获取原文并翻译 | 示例

摘要

In game theory the interaction among players obligates each player to develop a belief about the possible strategies of the other players, to choose a best-reply given those beliefs, and to look for an adjustment of the best-reply and the beliefs using a learning mechanism until they reach an equilibrium point. Usually, the behavior of an individual cost-function, when such best-reply strategies are applied, turns out to be non-monotonic and concluding that such strategies lead to some equilibrium point is a non-trivial task. Even in repeated games the convergence to a stationary equilibrium is not always guaranteed. The best-reply strategies analyzed in this paper represent the most frequent type of behavior applied in practice in problems of bounded rationality of agents considered within the Artificial Intelligence research area. They are naturally related with the, so-called, fixed-local-optimal actions or, in other words, with one step-ahead optimization algorithms widely used in the modern Intelligent Systems theory.
机译:在博弈论中,玩家之间的互动使每个玩家有义务对其他玩家的可能策略形成信念,根据这些信念选择最佳回答,并通过学习来寻求最佳回答和信念的调整。直到达到平衡点为止。通常,当应用这种最佳答复策略时,单个成本函数的行为被证明是非单调的,并且得出这样的策略导致某个平衡点的结论并非易事。即使在重复游戏中,也始终无法保证收敛到平稳平衡。本文分析的最佳答复策略代表了在人工智能研究区域内考虑的主体有限理性问题中实践中最常使用的行为类型。它们自然地与所谓的固定局部最优动作相关,换句话说,与现代智能系统理论中广泛使用的一种逐步优化算法相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号