首页> 外文期刊>Expert Systems with Application >High quality information extraction and query-oriented summarization for automatic query-reply in social network
【24h】

High quality information extraction and query-oriented summarization for automatic query-reply in social network

机译:高质量信息提取和面向查询的摘要,用于社交网络中的自动查询-答复

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new method for automatic query-reply in social network. Information extraction and query-oriented summarization method are applied here to reply people's query. There are few effective and commonly used methods on filtering the redundancy and noise of the raw data, which results in the poor quality of the reply. Due to the characteristics of social network messages, we pay more attention to reducing the noise and eliminating the redundancy of the messages to ensure the quality of the final reply. First, we propose an information extraction method to extract high quality information from social network messages, which is based on time-frequency transformation. Second, query-oriented text summarization is implemented to generate a brief and concise summary as the final reply, which is based on the scoring, ranking and selection of sentences of high quality social network messages produced by previous step. Experimental results show that the research is effective in filtering the redundancy and noise of social network messages, the final query-reply results outperform other commonly used methods' results in both automatic evaluation and manual evaluation. Through our approach, noise and redundancy of social network messages are effectively filtered. Certainly, our method improves the quality of the reply for people's query. (C) 2015 Elsevier Ltd. All rights reserved.
机译:本文提出了一种新的社交网络自动查询回复方法。这里采用信息提取和面向查询的汇总方法来回答人们的查询。几乎没有有效且常用的方法来过滤原始数据的冗余和噪声,这会导致答复质量较差。由于社交网络消息的特性,我们更加注重减少噪声并消除消息的冗余性,以确保最终答复的质量。首先,我们提出了一种基于时频变换的信息提取方法,用于从社交网络消息中提取高质量的信息。其次,实现面向查询的文本摘要以生成简短的摘要作为最终答复,该摘要基于前一步生成的高质量社交网络消息的句子的评分,排名和选择。实验结果表明,该研究在过滤社交网络消息的冗余和噪声方面是有效的,在自动评估和手动评估方面,最终的查询-答复结果均优于其他常用方法的结果。通过我们的方法,社交网络消息的噪音和冗余得到了有效过滤。当然,我们的方法提高了人们查询的答复质量。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号