首页> 外文期刊>Expert Systems with Application >Enhanced Gabor (E-Gabor), Hypersphere-based normalization and Pearson General Kernel-based discriminant analysis for dimension reduction and classification of facial emotions
【24h】

Enhanced Gabor (E-Gabor), Hypersphere-based normalization and Pearson General Kernel-based discriminant analysis for dimension reduction and classification of facial emotions

机译:增强型Gabor(E-Gabor),基于超球面的归一化和基于Pearson General Kernel的判别分析,用于降维和面部表情分类

获取原文
获取原文并翻译 | 示例

摘要

This paper puts forward an Enhanced Gabor feature descriptor termed as E-Gabor for obtaining high classification accuracy of emotions with low dimension. Two methods have been used for further classification. In the first method, E-Gabor is used as a stand-alone feature for classification. Hypersphere-based normalization has been used for normalizing the E-Gabor features, thereby improving the efficiency in the classification of emotions. In the second method, the E-Gabor feature descriptor is fused with Pyramid Histogram of Gradient (PHOG) feature descriptor and projected to a common subspace of six dimensions using the proposed Pearson General Kernel-based Discriminant Analysis (PGK-DA) before classification. In both the methods, Pearson General Kernel-based Extreme Learning Machine (PGK-ELM) is used for classification. Experiments conducted on Japanese Female Facial Expression UAFFE), Cohn Kanade (CK+), Multimedia Understanding Group (MUG), Static Facial Expressions in the Wild (SFEW), Oulu-Chinese Academy of Science, Institute of Automation (Oulu-CASIA) and Man-Machine Interaction (MMI) datasets report a classification accuracy of 97.6%, 97.9%, 95.7%, 35.4%, 87.7% and 82.7% with method I and 95.7%, 97.2%, 94.9%, 35.2%, 87.1% and 82.1% with method II, respectively, for seven class emotion detection, which is high when compared to other state-of-the-art methods. (C) 2017 Elsevier Ltd. All rights reserved.
机译:提出了一种增强的Gabor特征描述符,称为E-Gabor,用于获得低维情感的高分类精度。两种方法已用于进一步分类。在第一种方法中,将E-Gabor用作分类的独立功能。基于超球面的归一化已用于归一化E-Gabor特征,从而提高了情感分类的效率。在第二种方法中,将E-Gabor特征描述符与金字塔金字塔直方图(PHOG)特征描述符融合,并在分类之前使用拟议的基于Pearson General Kernel的判别分析(PGK-DA)将其投影到六个维度的公共子空间。在这两种方法中,均使用基于Pearson General Kernel的极限学习机(PGK-ELM)进行分类。在日本女性面部表情UAFFE,Cohn Kanade(CK +),多媒体理解小组(MUG),野外静态面部表情(SFEW),奥卢中国科学院,自动化研究所(Oulu-CASIA)和人类进行的实验-机器交互(MMI)数据集报告方法I的分类准确性为97.6%,97.9%,95.7%,35.4%,87.7%和82.7%,以及95.7%,97.2%,94.9%,35.2%,87.1%和82.1%分别使用方法II进行七类情感检测,与其他最新方法相比,该方法的识别率很高。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号