首页> 外文期刊>Expert Systems with Application >Face alignment using a deep neural network with local feature learning and recurrent regression
【24h】

Face alignment using a deep neural network with local feature learning and recurrent regression

机译:使用具有局部特征学习和递归回归的深度神经网络进行人脸对齐

获取原文
获取原文并翻译 | 示例

摘要

We propose a face alignment method that uses a deep neural network employing both local feature learning and recurrent regression. This method is primarily based on a convolutional neural network(CNN), which automatically learns local feature descriptors from the local facial landmark dataset that we created. Our research is motivated by the belief that investigating a face from its low-level component features would produce more competitive face alignment results, just as a CNN is normally trained to automatically learn a feature hierarchy from the lowest to the highest levels of abstraction. Moreover, by separately training the feature extraction layers and the regression layers, we impose an explicit functional discrimination between the feature extraction and regression tasks. First, we train a feature extraction network that is used to classify the landmark patches in the dataset. Using this pre-trained feature extraction network, we build a face alignment network, which uses an entire face image rather than the local landmark patch as input, thus generating the global facial features. The subsequent local feature extraction layer extracts the local feature set from this global feature, finally generating the local feature descriptors, in which space the network learns a generic descent direction from the currently estimated landmark positions to the ground truth via linear regression applied recurrently. Head pose estimation network also applied to provide a good initial estimate to the local feature extraction layer for accurate convergence. We found that learning of the good local landmark features in pursuit of good landmark classification also leads to a higher face alignment accuracy and achieves state-of-the-art performance on several public benchmark dataset. It signifies the importance of learning not only the global features but the local features for face alignment. We further verify our method's effectiveness when applied to related problems such as head pose estimation, facial landmark tracking, and invisible landmark detection. We believe that good local learning enables a deeper understanding of the face or object resulting in higher performance. (C) 2017 Elsevier Ltd. All rights reserved.
机译:我们提出一种使用深度神经网络的人脸对齐方法,该神经网络同时使用局部特征学习和递归回归。该方法主要基于卷积神经网络(CNN),它会从我们创建的局部面部界标数据集中自动学习局部特征描述符。我们的研究基于这样的信念,即从低级组件特征中调查人脸会产生更具竞争力的人脸对齐结果,就像CNN通常经过训练可以自动学习从最低抽象层到最高抽象层的特征层次结构一样。此外,通过分别训练特征提取层和回归层,我们在特征提取和回归任务之间施加了明确的功能区分。首先,我们训练一个特征提取网络,该网络用于对数据集中的地标斑块进行分类。使用这个经过预先训练的特征提取网络,我们构建了一个面部对齐网络,该网络使用整个面部图像而不是局部地标斑块作为输入,从而生成全局面部特征。随后的局部特征提取层从该全局特征中提取局部特征集,最终生成局部特征描述符,在该空间中,网络通过循环应用的线性回归学习从当前估计的地标位置到地面真实情况的通用下降方向。头部姿势估计网络还用于为局部特征提取层提供良好的初始估计,以实现准确的收敛。我们发现,为了追求良好的地标分类而学习良好的局部地标特征,还可以提高面部对齐的准确性,并在多个公共基准数据集上实现最新的性能。它表示不仅要学习全局特征,还要学习局部特征对脸部对齐的重要性。当应用于头部姿势估计,面部界标跟踪和不可见界标检测等相关问题时,我们进一步验证了该方法的有效性。我们相信,良好的本地学习可以使人对面部或物体有更深入的了解,从而获得更高的性能。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号