首页> 外文期刊>Expert Systems with Application >Detecting rapid eye movement sleep using a single EEG signal channel
【24h】

Detecting rapid eye movement sleep using a single EEG signal channel

机译:使用单个EEG信号通道检测快速眼动睡眠

获取原文
获取原文并翻译 | 示例

摘要

Sleep stage scoring is generally determined in a polysomnographic (PSG) study where technologists use electroencephalogram (EEG), electromyogram (EMG), and electrooculogram (EOG) signals to determine the sleep stages. Such a process is time consuming and labor intensive. To reduce the workload and to improve the sleep stage scoring performance of sleep experts, this paper introduces an intelligent rapid eye movement (REM) sleep detection method that requires only a single EEG channel. The proposed approach distinguishes itself from previous automatic sleep staging methods by introducing two sets of auxiliary features to help resolve the difficulties caused by interpersonal EEG signal differences. In addition to adopting conventional time and frequency domain features, two empirical rules are introduced to enhance REM detection performance based on sleep being a continuous process. The approach was tested with 779,661 epochs obtained from 947 overnight PSG studies. The REM sleep detection results show a kappa coefficient at 0.752, an accuracy level of 0.930, a sensitivity score of 0.814, and a positive predictive value of 0.775. The results also show that the performance of the approach varies with the ratio of REM sleep and the severity of sleep apnea of the subjects. The experimental results also show that it is possible to improve the performance of an automatic sleep staging method by tailoring it to subgroups of persons that have similar sleep architecture and clinical characteristics. (C) 2017 Elsevier Ltd. All rights reserved.
机译:睡眠阶段评分通常是在多导睡眠图(PSG)研究中确定的,技术人员使用脑电图(EEG),肌电图(EMG)和眼电图(EOG)信号来确定睡眠阶段。这样的过程既费时又费力。为了减少工作量并提高睡眠专家的睡眠阶段评分性能,本文介绍了一种仅需要单个EEG通道的智能快速眼动(REM)睡眠检测方法。所提出的方法通过引入两组辅助功能来帮助解决由人际脑电信号差异引起的困难,从而使其与以前的自动睡眠分期方法区分开来。除了采用常规的时域和频域特征之外,还引入了两个经验规则,以基于睡眠是连续过程来增强REM检测性能。该方法已通过947个夜间PSG研究获得的779,661个时代进行了测试。 REM睡眠检测结果显示,κ系数为0.752,准确度水平为0.930,灵敏度得分为0.814,阳性预测值为0.775。结果还表明,该方法的性能随REM睡眠比率和受试者睡眠呼吸暂停的严重程度而变化。实验结果还表明,通过将自动分期方法调整为具有相似睡眠结构和临床特征的人群,可以改善自动分期方法的性能。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号