首页> 外文期刊>Expert Systems with Application >Assessing machine learning classifiers for the detection of animals' behavior using depth-based tracking
【24h】

Assessing machine learning classifiers for the detection of animals' behavior using depth-based tracking

机译:评估机器学习分类器,以使用基于深度的跟踪来检测动物的行为

获取原文
获取原文并翻译 | 示例

摘要

There is growing interest in the automatic detection of animals' behaviors and body postures within the field of Animal Computer Interaction, and the benefits this could bring to animal welfare, enabling remote communication, welfare assessment, detection of behavioral patterns, interactive and adaptive systems, etc. Most of the works on animals' behavior recognition rely on wearable sensors to gather information about the animals' postures and movements, which are then processed using machine learning techniques. However, non-wearable mechanisms such as depth-based tracking could also make use of machine learning techniques and classifiers for the automatic detection of animals' behavior. These systems also offer the advantage of working in set-ups in which wearable devices would be difficult to use. This paper presents a depth-based tracking system for the automatic detection of animals' postures and body parts, as well as an exhaustive evaluation on the performance of several classification algorithms based on both a supervised and a knowledge-based approach. The evaluation of the depth -based tracking system and the different classifiers shows that the system proposed is promising for advancing the research on animals' behavior recognition within and outside the field of Animal Computer Interaction. (C) 2017 Elsevier Ltd. All rights reserved.
机译:在动物计算机交互领域内,对动物行为和身体姿势自动检测的兴趣日益浓厚,这可能会为动物福利带来好处,可以实现远程通信,福利评估,行为模式检测,交互式和自适应系统,有关动物行为识别的大多数作品都依靠可穿戴传感器来收集有关动物姿势和运动的信息,然后使用机器学习技术对其进行处理。但是,诸如基于深度的跟踪之类的不可穿戴机制也可以利用机器学习技术和分类器来自动检测动物的行为。这些系统还提供了在难以使用可穿戴设备的设置中工作的优势。本文提出了一种基于深度的跟踪系统,用于自动检测动物的姿势和身体部位,以及基于监督和基于知识的方法对几种分类算法的性能进行详尽的评估。对基于深度的跟踪系统和不同分类器的评估表明,所提出的系统对于推进动物计算机交互领域内外的动物行为识别研究具有希望。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号