首页> 外文期刊>Expert Systems with Application >An unsupervised multilingual approach for online social media topic identification
【24h】

An unsupervised multilingual approach for online social media topic identification

机译:在线社交媒体主题识别的无监督多语言方法

获取原文
获取原文并翻译 | 示例

摘要

Social media data can be valuable in many ways. However, the vast amount of content shared and the linguistic variants of languages used on social media are making it very challenging for high-value topics to be identified. In this paper, we present an unsupervised multilingual approach for identifying highly relevant terms and topics from the mass of social media data. This approach combines term ranking, localised language analysis, unsupervised topic clustering and multilingual sentiment analysis to extract prominent topics through analysis of Twitter's tweets from a period of time. It is observed that each of the ranking methods tested has their strengths and weaknesses, and that our proposed 'joint' ranking method is able to take advantage of the strengths of the ranking methods. This 'Joint' ranking method coupled with an unsupervised topic clustering model is shown to have the potential to discover topics of interest or concern to a local community. Practically, being able to do so may help decision makers to gauge the true opinions or concerns on the ground. Theoretically, the research is significant as it shows how an unsupervised online topic identification approach can be designed without much manual annotation effort, which may have great implications for future development of expert and intelligent systems. (C) 2017 Elsevier Ltd. All rights reserved.
机译:社交媒体数据在许多方面都可能有价值。但是,社交媒体上共享的大量内容以及语言的语言变体正使得识别高价值主题变得非常困难。在本文中,我们提出了一种无监督的多语言方法,用于从大量社交媒体数据中识别高度相关的术语和主题。这种方法结合了术语排名,本地化语言分析,无监督主题聚类和多语言情感分析,可通过分析一段时间内Twitter的推文来提取突出的主题。可以看出,测试的每种排名方法都有其优点和缺点,并且我们提出的“联合”排名方法能够利用排名方法的优点。这种“联合”排名方法与无监督的主题聚类模型相结合,被证明具有发现本地社区感兴趣或关注的主题的潜力。实际上,能够这样做可以帮助决策者评估当地的真实意见或关注。从理论上讲,这项研究意义重大,因为它表明了无需大量手动注释即可如何设计无监督的在线主题识别方法,这可能会对专家和智能系统的未来发展产生重大影响。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号