首页> 外文期刊>Expert Systems with Application >Enhanced question understanding with dynamic memory networks for textual question answering
【24h】

Enhanced question understanding with dynamic memory networks for textual question answering

机译:动态内存网络增强了对问题的理解,可用于文本问题解答

获取原文
获取原文并翻译 | 示例

摘要

Memory networks show promising context understanding and reasoning capabilities in Textual Question Answering (Textual QA). We improve the previous dynamic memory networks to do Textual QA by processing inputs to simultaneously extract global and hierarchical salient features. We then use them to construct multiple feature sets at each reasoning step. Experiments were conducted on a public Textual Question Answering dataset (Facebook bAbl dataset) in two ways: with and without supervision from labels of supporting facts. Compared to previous works such as Dynamic Memory Networks, our models show better accuracy and stability. (C) 2017 Elsevier Ltd. All rights reserved.
机译:记忆网络在文本问题解答(文本QA)中显示出有希望的上下文理解和推理功能。我们通过处理输入以同时提取全局和分层显着特征来改进以前的动态内存网络以执行文本质量检查。然后,我们在每个推理步骤中使用它们来构造多个特征集。以两种方式在公共文本问题回答数据集(Facebook bAbl数据集)上进行了实验:在支持事实的标签监督下和不进行监督的情况下。与以前的作品(例如动态内存网络)相比,我们的模型显示出更好的准确性和稳定性。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Expert Systems with Application》 |2017年第9期|39-45|共7页
  • 作者单位

    Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan 430074, Peoples R China|Univ Waterloo, David R Cheriton Sch Comp Sci, Waterloo, ON N2L 3G1, Canada;

    Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan 430074, Peoples R China;

    RSVP Technol Inc, Suite 19,279 Weber St N, Waterloo, ON N2J 3H8, Canada;

    RSVP Technol Inc, Suite 19,279 Weber St N, Waterloo, ON N2J 3H8, Canada;

    RSVP Technol Inc, Suite 19,279 Weber St N, Waterloo, ON N2J 3H8, Canada;

    Univ Waterloo, David R Cheriton Sch Comp Sci, Waterloo, ON N2L 3G1, Canada;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Dynamic memory networks; Attention based GRU; Textual question answering;

    机译:动态内存网络;基于注意力的GRU;文本问题解答;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号