首页> 外文期刊>Expert Systems with Application >Sparse representation of two-and three-dimensional images with fractional Fourier, Hartley, linear canonical, and Haar wavelet transforms
【24h】

Sparse representation of two-and three-dimensional images with fractional Fourier, Hartley, linear canonical, and Haar wavelet transforms

机译:分数维傅里叶,Hartley,线性规范和Haar小波变换的二维和三维图像的稀疏表示

获取原文
获取原文并翻译 | 示例

摘要

Sparse recovery aims to reconstruct signals that are sparse in a linear transform domain from a heavily underdetermined set of measurements. The success of sparse recovery relies critically on the knowledge of transform domains that give compressible representations of the signal of interest. Here we consider two-and three-dimensional images, and investigate various multi -dimensional transforms in terms of the compressibility of the resultant coefficients. Specifically, we compare the fractional Fourier (FRT) and linear canonical transforms (LCT), which are generalized versions of the Fourier transform (FT), as well as Hartley and simplified fractional Hartley transforms, which differ from corresponding Fourier transforms in that they produce real outputs for real inputs. We also examine a cascade approach to improve transform -domain sparsity, where the Haar wavelet transform is applied following an initial Hartley transform. To compare the various methods, images are recovered from a subset of coefficients in the respective transform domains. The number of coefficients that are retained in the subset are varied systematically to examine the level of signal sparsity in each transform domain. Recovery performance is assessed via the structural similarity index (SSIM) and mean squared error (MSE) in reference to original images. Our analyses show that FRT and LCT transform yield the most sparse representations among the tested transforms as dictated by the improved quality of the recovered images. Furthermore, the cascade approach improves transform -domain sparsity among techniques applied on small image patches. (C) 2017 Elsevier Ltd. All rights reserved.
机译:稀疏恢复的目的是从高度不确定的一组测量中重建在线性变换域中稀疏的信号。稀疏恢复的成功关键取决于变换域的知识,这些变换域可以给出感兴趣信号的可压缩表示形式。在这里,我们考虑二维图像和三维图像,并根据所得系数的可压缩性研究各种多维变换。具体而言,我们比较了分数傅里叶(FRT)和线性规范变换(LCT)(它们是傅里叶变换(FT)的广义版本)以及Hartley和简化分数次Hartley变换,它们与相应的Fourier变换不同,它们产生用于实际输入的实际输出。我们还研究了一种改进变换域稀疏性的级联方法,其中在初始Hartley变换之后应用Haar小波变换。为了比较各种方法,从各个变换域中的系数子集中恢复图像。子集中保留的系数数量会系统变化,以检查每个变换域中信号稀疏度的水平。参照原始图像,通过结构相似性指数(SSIM)和均方误差(MSE)评估恢复性能。我们的分析表明,FRT和LCT变换在所测试的变换中产生最稀疏的表示,这取决于恢复的图像质量的提高。此外,级联方法改善了应用于小图像补丁的技术之间的变换域稀疏性。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号