首页> 外文期刊>Expert Systems with Application >A novel mobile robot localization approach based on topological maps using classification with reject option in omnidirectional images
【24h】

A novel mobile robot localization approach based on topological maps using classification with reject option in omnidirectional images

机译:一种基于拓扑图的全向图像移动机器人定位新方法

获取原文
获取原文并翻译 | 示例

摘要

Mobile robot localization, which allows a robot to identify its position, is one of main challenges in the field of Robotics. In this work, we provide an evaluation of consolidated feature extractions and machine learning techniques from omnidirectional images focusing on topological map and localization tasks. The main contributions of this work are a novel method for localization via classification with reject option using omnidirectional images, as well as two novel omnidirectional image data sets. The localization system was analyzed in both virtual and real environments. Based on the experiments performed, the Minimal Learning Machine with Nearest Neighbors classifier and Local Binary Patterns feature extraction proved to be the best combination for mobile robot localization with accuracy of 96.7% and an Fscore of 96.6%. (C) 2016 Elsevier Ltd. All rights reserved.
机译:允许机器人识别其位置的移动机器人本地化是机器人技术领域的主要挑战之一。在这项工作中,我们提供了从集中于拓扑图和本地化任务的全向图像中合并的特征提取和机器学习技术的评估。这项工作的主要贡献是使用全向图像通过拒绝选项进行分类的一种新颖的定位方法,以及两个新颖的全向图像数据集。在虚拟和实际环境中都分析了本地化系统。根据所进行的实验,具有最近邻分类器和局部二进制模式特征提取的最小学习机被证明是移动机器人定位的最佳组合,准确度为96.7%,Fscore为96.6%。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号