首页> 外文期刊>Expert Systems with Application >Gender classification from offline multi-script handwriting images using oriented Basic Image Features (oBIFs)
【24h】

Gender classification from offline multi-script handwriting images using oriented Basic Image Features (oBIFs)

机译:使用定向的基本图像功能(oBIF)从离线多脚本手写图像进行性别分类

获取原文
获取原文并翻译 | 示例

摘要

Classification of gender from images of handwriting is an interesting research problem in computerized analysis of handwriting. The correlation between handwriting and gender of writer can be exploited to develop intelligent systems to facilitate forensic experts, document examiners, paleographers, psychologists and neurologists. We propose a handwriting based gender recognition system that exploits texture as the discriminative attribute between male and female handwriting. The textural information in handwriting is captured using combinations of different configurations of oriented Basic Image Features (oBIFs). oBIFs histograms and oBIFs columns histograms extracted from writing samples of male and female handwriting are used to train a Support Vector Machine classifier (SVM). The system is evaluated on three subsets of the QUWI database of Arabic and English writing samples using the experimental protocols of the ICDAR 2013, ICDAR 2015 and ICFHR 2016 gender classification competitions reporting classification rates of 71%, 76% and 68% respectively; outperforming the participating systems of these competitions. While textural measures like local binary patterns, histogram of oriented gradients and Gabor filters etc. have remained a popular choice for many expert systems targeting recognition problems, the present study demonstrates the effectiveness of relatively less investigated oBIFs as a robust textual descriptor. (C) 2018 Elsevier Ltd. All rights reserved.
机译:从笔迹图像对性别进行分类是笔迹计算机分析中一个有趣的研究问题。可以利用笔迹和作者性别之间的相关性来开发智能系统,以方便法医专家,文件审查员,古画家,心理学家和神经病学家。我们提出了一种基于笔迹的性别识别系统,该系统利用纹理作为男女笔迹之间的区别属性。手写的纹理信息是使用面向基本图像特征(oBIF)的不同配置的组合捕获的。从男性和女性手写书写样本中提取的oBIFs直方图和oBIFs列直方图用于训练支持向量机分类器(SVM)。使用ICDAR 2013,ICDAR 2015和ICFHR 2016性别分类竞赛的实验协议,对阿拉伯和英语写作样本的QUWI数据库的三个子集进行了系统评估,分类率分别为71%,76%和68%;表现优于这些比赛的参赛系统。尽管诸如局部二进制模式,定向梯度直方图和Gabor过滤器之类的纹理测量方法一直是许多针对识别问题的专家系统的流行选择,但本研究表明,相对较少研究的oBIF作为稳健的文本描述符的有效性。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号