首页> 外文期刊>Expert Systems with Application >Multi-scale Gaussian process experts for dynamic evolution prediction of complex systems
【24h】

Multi-scale Gaussian process experts for dynamic evolution prediction of complex systems

机译:多尺度高斯过程专家,用于复杂系统的动态演化预测

获取原文
获取原文并翻译 | 示例

摘要

Predictive analytics has become an important topic in expert and intelligent systems, with broad applications across various engineering and business domains, such as the prediction of exchange rate in finance, weather and demand for energy using mixture of experts. However, selection of the number of experts and assignment of the input to individual experts remain elusive, especially for highly nonlinear and nonstationary systems. This paper presents a novel mixture of experts, namely, nonparametric multi scale Gaussian process (MGP) experts to predict the dynamic evolution of such complex systems. Concretely, intrinsic time-scale decomposition is first used to iteratively decompose the time series generated from such complex systems into a series of proper rotation components and a baseline trend component. Those components delineate the true time-frequency-energy patterns of the complex systems at different granularity. A Gaussian process (GP) expert is then applied on each component to predict the system evolution at each scale. MGP circumvent the tedious selection and assignment problems via the non parametric ITD. Summation of those individual forecasts represents the overall evolution of the original time series. Case studies using synthetic and real-world data elucidated that the proposed MGP model significantly outperforms conventional autoregressive models, composite GP model, and support vector regression in terms of prediction accuracy, and it is particularly effective for multi-step forecasting. Published by Elsevier Ltd.
机译:预测分析已成为专家和智能系统中的重要主题,在各个工程和业务领域都有广泛的应用,例如使用专家的混合物来预测金融,天气和能源需求中的汇率。然而,专家数量的选择以及专家的输入分配仍然难以实现,特别是对于高度非线性和不稳定的系统。本文介绍了一种新颖的专家组合,即非参数多尺度高斯过程(MGP)专家来预测此类复杂系统的动态演化。具体而言,首先使用内在的时间尺度分解将由这种复杂系统生成的时间序列迭代分解为一系列适当的旋转分量和基线趋势分量。这些组件描绘了不同粒度下复杂系统的真实时频能量模式。然后将高斯过程(GP)专家应用于每个组件,以预测每个规模的系统发展。 MGP通过非参数ITD避免了繁琐的选择和分配问题。这些单个预测的总和代表了原始时间序列的整体演变。使用合成和实际数据进行的案例研究表明,所提出的MGP模型在预测准确度方面显着优于传统的自回归模型,复合GP模型和支持向量回归,并且对于多步预测特别有效。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号