首页> 外文期刊>Expert Systems with Application >Discovering sentiment sequence within email data through trajectory representation
【24h】

Discovering sentiment sequence within email data through trajectory representation

机译:通过轨迹表示发现电子邮件数据中的情感顺序

获取原文
获取原文并翻译 | 示例

摘要

Traditional document-level sentiment analysis fails to consider sentiment sequence within documents. This research paper proposes a novel perspective of sequence-based document sentiment analysis for discovering sentiment sequence and clustering sentiments for Email data. The proposed scheme of approach applies a trajectory clustering algorithm to Email trajectories transformed from sentiment features generated from SentiWordNet lexicon for discovering sentiment sequence within topic and temporal pattern distributions on the basis of trajectory clusters and their representative trajectories. Experiments conducted on real Email data provide evidence on proving the feasibility of the proposed technique and justifying the indispensability of sentiment sequence within documents in the determination of sentiment polarity. Crown Copyright (C) 2018 Published by Elsevier Ltd. All rights reserved.
机译:传统的文档级情感分析无法考虑文档中的情感顺序。该研究论文提出了一种基于序列的文档情感分析的新视角,用于发现情感序列和对电子邮件数据进行情感聚类。所提出的方法方案将轨迹聚类算法应用于从SentiWordNet词典生成的情感特征转换而来的电子邮件轨迹上,以基于轨迹簇及其代表轨迹在主题和时间模式分布中发现情感序列。对真实电子邮件数据进行的实验提供了证据,证明了所提出技术的可行性,并证明了确定情感极性时文档中情感序列的不可缺少性。 Crown版权所有(C)2018,由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号