首页> 外文期刊>Expert Systems with Application >New cuckoo search algorithms with enhanced exploration and exploitation properties
【24h】

New cuckoo search algorithms with enhanced exploration and exploitation properties

机译:新的布谷鸟搜索算法具有增强的勘探和开发属性

获取原文
获取原文并翻译 | 示例

摘要

Cuckoo Search (CS) algorithm is nature inspired global optimization algorithm based on the brood parasitic behavior of cuckoos. It has proved to be an efficient algorithm as it has been successfully applied to solve a large number of problems of different areas. CS employs Levy flights to generate step size and to search the solution space effectively. The local search is carried out using switch probability in which certain percentages of solutions are removed. Though CS is an effective algorithm, still its performance can be improved by incorporating the exploration and exploitation during the search process. In this work, three modified versions of CS are proposed to improve the properties of exploration and exploitation. All these versions employ Cauchy operator to generate the step size instead of Levy flights to efficiently explore the search space. Moreover, two new concepts, division of population and division of generations, are also introduced in CS so as to balance the exploration and exploitation. The proposed versions of CS are tested on 24 standard benchmark problems with different dimension sizes and varying population sizes and the effect of probability switch has been studied. Apart from this, the best of the proposed versions is also tested on CEC 2015 benchmark suite. The modified algorithms have been statistically tested in comparison to the state-of-the-art algorithms, namely grey wolf optimization (GWO), differential evolution (DE), firefly algorithm (FA), flower pollination algorithm (FPA) and bat algorithm (BA). The numerical and statistical results prove the superiority of the proposed versions with respect to other popular algorithms available in the literature. (C) 2017 Elsevier Ltd. All rights reserved.
机译:杜鹃搜索(CS)算法是一种基于自然界的全局优化算法,它基于杜鹃的巢寄生行为。由于它已成功应用于解决不同领域的大量问题,因此已被证明是一种有效的算法。 CS使用征费飞行来生成步长并有效搜索解决方案空间。使用切换概率执行局部搜索,其中某些百分比的解决方案被删除。尽管CS是一种有效的算法,但仍可以通过在搜索过程中结合探索和利用来提高其性能。在这项工作中,提出了三个修改版本的CS,以改善勘探和开发的特性。所有这些版本都使用柯西运算符来生成步长,而不是征费飞行来有效地探索搜索空间。此外,CS还引入了两个新概念,即人口划分和世代划分,以平衡勘探和开发。 CS的建议版本在具有不同维度大小和不同总体大小的24个标准基准问题上进行了测试,并研究了概率转换的影响。除此之外,CEC 2015基准套件还测试了最佳版本。与最先进的算法(即灰狼优化(GWO),差分进化(DE),萤火虫算法(FA),花粉传粉算法(FPA)和蝙蝠算法( BA)。数值和统计结果证明了提出的版本相对于文献中可用的其他流行算法的优越性。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号