首页> 外文期刊>Expert Systems with Application >Building a contextual dimension for OLAP using textual data from social networks
【24h】

Building a contextual dimension for OLAP using textual data from social networks

机译:使用来自社交网络的文本数据为OLAP建立上下文维度

获取原文
获取原文并翻译 | 示例

摘要

Due to the continuous growth of social networks the textual information available has increased exponentially. Data warehouses (DW) and online analytical processing (OLAP) are some of the established technologies to process and analyze structured data. However, one of their main limitations is the lack of automatic processing and analysis of unstructured data (specifically, textual data), and its integration with structured data. This paper proposes the creation, integration and implementation of a new dimension called Contextual Dimension from texts obtained from social networks into a multidimensional model. Such a dimension is automatically created after applying hierarchical clustering algorithms and is fully independent from the language of the texts. This dimension allows the inclusion of multidimensional analysis of texts using contexts and topics integrated with conventional dimensions into business decisions. The experiments were carried out by means of a freeware OLAP system (Wonder 3.0) using real data from social networks. (C) 2017 Elsevier Ltd. All rights reserved.
机译:由于社交网络的不断发展,可用的文本信息成倍增加。数据仓库(DW)和在线分析处理(OLAP)是一些用于处理和分析结构化数据的已建立技术。但是,它们的主要局限之一是缺乏对非结构化数据(特别是文本数据)的自动处理和分析以及与结构化数据的集成。本文提出了一种新的维度的创建,集成和实现,该维度是从社交网络获得的文本转换为多维模型后称为“上下文维度”。在应用分级聚类算法后会自动创建这样的维度,并且完全独立于文本的语言。此维度允许使用与常规维度集成的上下文和主题将文本的多维分析包含到业务决策中。实验是通过免费的OLAP系统(Wonder 3.0)使用来自社交网络的真实数据进行的。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号