首页> 外文期刊>Expert Systems with Application >Modification of the Best-Worst and MABAC methods: A novel approach based on interval-valued fuzzy-rough numbers
【24h】

Modification of the Best-Worst and MABAC methods: A novel approach based on interval-valued fuzzy-rough numbers

机译:最佳和MABAC方法的修改:一种基于区间值模糊粗糙数的新方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new approach for the treatment of uncertainty which is based on interval-valued fuzzy-rough numbers (IVFRN). It is shown that by integrating the rough approach with the traditional fuzzy approach, the subjectivity that exists when defining the borders of fuzzy sets is eliminated. IVFRN make decision making possible using only the internal knowledge in the operative data available to the decision makers. In this way objective uncertainties are used and there is no need to rely on models of assumptions. Instead of different external parameters in the application of IVFRN, the structure of the given data is used. On this basis an original multi-criteria model was developed based on an IVFRN approach. In this multi-criteria model the traditional steps of the BWM (Best-Worst method) and MABAC (Multi-Attributive Border Approximation area Comparison) methods are modified. The model was tested and validated on a study of the optimal selection of fire fighting helicopters. Testing demonstrated that the model based on IVFRN enabled more objective expert evaluation of the criteria in comparison with traditional fuzzy and rough approaches. A sensitivity analysis of the IVFRN BWM-MABAC model was carried out by means of 57 scenarios, the results of which showed a high degree of stability. The results of the IVFRN model were validated by comparing them with the results of the fuzzy and rough extension of the MABAC, COPRAS and VIKOR models. (C) 2017 Elsevier Ltd. All rights reserved.
机译:本文提出了一种基于区间值模糊粗糙数(IVFRN)的不确定性处理新方法。结果表明,通过将粗糙方法与传统模糊方法相结合,消除了定义模糊集边界时存在的主观性。 IVFRN仅使用决策者可用的操作数据中的内部知识来使决策成为可能。通过这种方式,可以使用客观不确定性,并且无需依赖假设模型。代替在IVFRN的应用中使用不同的外部参数,使用给定数据的结构。在此基础上,基于IVFRN方法开发了原始的多标准模型。在此多标准模型中,修改了BWM(最佳-最差方法)和MABAC(多属性边界近似区域比较)方法的传统步骤。通过对消防直升机的最佳选择进行研究,对模型进行了测试和验证。测试表明,与传统的模糊和粗糙方法相比,基于IVFRN的模型能够更客观地评估标准。通过57个场景对IVFRN BWM-MABAC模型进行了敏感性分析,其结果显示出高度的稳定性。通过将IVFRN模型的结果与MABAC,COPRAS和VIKOR模型的模糊扩展和粗糙扩展的结果进行比较,来验证IVFRN模型的结果。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号