首页> 外文期刊>Expert Systems with Application >Sequential fraud detection for prepaid cards using hidden Markov model divergence
【24h】

Sequential fraud detection for prepaid cards using hidden Markov model divergence

机译:使用隐藏的Markov模型散度对预付卡进行顺序欺诈检测

获取原文
获取原文并翻译 | 示例

摘要

Stored-value cards, or prepaid cards, are increasingly popular. Like credit cards, their use is vulnerable to fraud, costing merchants and card processors millions of dollars. Prior techniques to automate fraud detection rely on a priori rules or specialized learned models associated with the customer. Mostly, these techniques do not consider fraud sequences or changing behavior, which can lead to false alarms. This study demonstrates how a transaction model can be dynamically created and updated, and fraud can be automatically detected for prepaid cards. A card processing company creates models of the store terminals rather than the customers, in part, because of the anonymous nature of prepaid cards. The technique automatically creates, updates, and compares hidden Markov models (HMM) of merchant terminals. We present fraud detection and experiments on real transactional data, showing the efficiency and effectiveness of the approach. In the fraud test cases, derived from known fraud cases, the technique has a good F-score. The technique can detect fraud in real-time for merchants, as card transactions are processed by a modern transaction processing system. (C) 2017 Elsevier Ltd. All rights reserved.
机译:储值卡或预付卡越来越受欢迎。像信用卡一样,它们的使用容易受到欺诈,使商户和卡处理商损失数百万美元。自动进行欺诈检测的现有技术依赖于与客户相关联的先验规则或专门学习的模型。通常,这些技术不会考虑欺诈序列或更改行为,这可能导致错误警报。这项研究演示了如何动态创建和更新交易模型,以及如何自动检测预付卡的欺诈行为。卡处理公司创建商店终端而不是客户的模型,部分原因是预付卡的匿名性质。该技术自动创建,更新和比较商户终端的隐藏马尔可夫模型(HMM)。我们介绍了欺诈检测和对真实交易数据的实验,显示了该方法的效率和有效性。在从已知欺诈案件派生的欺诈测试案件中,该技术具有良好的F评分。当卡交易由现代交易处理系统处理时,该技术可以为商家实时检测欺诈。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号