首页> 外文期刊>Expert Systems with Application >Curriculum learning based approach for noise robust language identification using DNN with attention
【24h】

Curriculum learning based approach for noise robust language identification using DNN with attention

机译:基于课程学习的DNN噪声鲁棒语言识别方法

获取原文
获取原文并翻译 | 示例

摘要

Automatic language identification (LID) in practical environments is gaining a lot of scientific attention due to rapid developments in multilingual speech processing applications. When an LID is operated in noisy environments a degradation in the performance can be observed and it can be majorly attributed to mismatch between the training and operating environments. This work is aimed towards developing an LID system that can robustly operate in clean and noisy environments. Traditionally, to reduce the mismatch between training and operating environments, noise is synthetically induced to the training corpus and these models are termed as multi-SNR models. In this work, various curriculum learning strategies are explored to train multi-SNR models, such that the trained models have better generalization in performance over varying background environments. I-vector, Deep neural networks (DNN) and DNN With Attention (DNN-WA) architectures are used in this work for developing LID systems, Experimental verification of the proposed approach is carried out using IIIT-H Indian database and AP17-OLR database. The performance of LID system is tested at different signal-to-noise ratio (SNR) levels using white and vehicular noises from NOISEX dataset. In comparison to multi-SNR models, the LID systems trained with curriculum learning have performed better in terms of equal error rate (EER) and generalization in EER across varying background environments. The degradation in the performance of LID systems due to environmental noise has been effectively reduced by training multi-SNR models using curriculum learning. (C) 2018 Elsevier Ltd. All rights reserved.
机译:由于多语言语音处理应用程序的迅速发展,在实际环境中的自动语言识别(LID)受到了广泛的科学关注。当LID在嘈杂的环境中运行时,可以观察到性能下降,这主要归因于训练和运行环境之间的不匹配。这项工作旨在开发一种可以在干净嘈杂的环境中稳定运行的LID系统。传统上,为减少训练与操作环境之间的不匹配,噪声会综合性地引入训练语料库,这些模型被称为多SNR模型。在这项工作中,探索了各种课程学习策略来训练多SNR模型,从而使训练后的模型在变化的背景环境下具有更好的性能概括。在这项工作中,我使用了I-vector,深层神经网络(DNN)和具有注意力的DNN(DNN-WA)体系结构来开发LID系统,并使用IIIT-H印度数据库和AP17-OLR数据库对提出的方法进行了实验验证。使用来自NOISEX数据集的白噪声和车辆噪声,在不同的信噪比(SNR)级别下测试LID系统的性能。与多SNR模型相比,经过课程学习训练的LID系统在不同背景环境下的均等错误率(EER)和EER泛化方面表现更好。通过使用课程学习训练多SNR模型,可以有效地减少由于环境噪声导致的LID系统性能下降。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号