首页> 外文期刊>Expert Systems with Application >A new automatic sleep staging system based on statistical behavior of local extrema using single channel EEG signal
【24h】

A new automatic sleep staging system based on statistical behavior of local extrema using single channel EEG signal

机译:一种基于单通道脑电信号局部极值统计行为的新型自动睡眠分期系统

获取原文
获取原文并翻译 | 示例

摘要

Over the past decade, converging evidence from diverse studies has demonstrated that sleep is closely associated with the mental and physical health, quality of life, and safety. Visual sleep scoring provides an initial and tangible illustration of how the brain wave changes across different sleep stages. The main objective of the present study is to design an accurate and robust computer-assisted sleep stage scoring system using single-channel EEG signal by proposing a novel time domain feature named Statistical Behavior of Local Extrema (SBLE). SBLE provides a profound understanding of hidden dynamics of EEG signals by quantifying and symbolizing its local extrema information, extracting and defining various patterns, and statistical analysis of extracted patterns. First, each EEG segment was decomposed into 6 frequency sub bands (i.e., low-delta, high-delta, theta, alpha, sigma, and beta). Next, SBLE features were separately computed from each sub-band. Then, an optimal feature set with a high rate of accuracy was selected using a supervised Multi-Cluster/Class Feature Selection (MCFS) algorithm. Finally, the selected features were fed to a multi-class Support Vector Machine (SVM) for classification purposes. The benchmark Sleep-EDF dataset and DREAMS Subject Database were employed to evaluate the performance of the proposed framework. The average (+/- variance) accuracy rates were 90.6 +/- 4.2%, 91.8 +/- 5.0%, 92.8 +/- 3.3%, 94.5 +/- 3.4%, 97.9 +/- 1.4% for six-stage to two-stage sleep classification on Sleep-EDF dataset, respectively. Besides, its performance on DREAMS Subjects Database was also promising in term of accuracy, sensitivity, specificity, and Cohen's Kappa coefficient. Experimental results suggest that the proposed methodology can precisely solve the multi-class sleep stage classification problem by presenting an innovative symbolic approach similar to physician's point of view. (C) 2018 Published by Elsevier Ltd.
机译:在过去的十年中,来自各种研究的越来越多的证据表明,睡眠与身心健康,生活质量和安全性密切相关。视觉睡眠评分为脑电波在不同睡眠阶段的变化提供了初步且切实的说明。本研究的主要目的是通过提出一种名为“局部极值统计行为”的新型时域特征,设计一种使用单通道EEG信号的准确而强大的计算机辅助睡眠阶段评分系统。 SBLE通过量化和符号化其局部极值信息,提取和定义各种模式以及对提取出的模式进行统计分析,从而提供了对EEG信号隐藏动态的深刻理解。首先,将每个EEG片段分解为6个子频带(即低三角,高三角,θ,α,西格玛和贝塔)。接下来,从每个子带分别计算出SBLE功能。然后,使用监督的多群集/类特征选择(MCFS)算法选择具有较高准确率的最佳特征集。最后,将选定的特征馈入多类支持向量机(SVM)进行分类。使用基准Sleep-EDF数据集和DREAMS主题数据库来评估所提出框架的性能。六个阶段的平均准确率(+/-方差)为90.6 +/- 4.2%,91.8 +/- 5.0%,92.8 +/- 3.3%,94.5 +/- 3.4%,97.9 +/- 1.4%在Sleep-EDF数据集上分别进行两阶段睡眠分类。此外,它在DREAMS主题数据库上的表现在准确性,敏感性,特异性和Cohen的Kappa系数方面也很有希望。实验结果表明,所提出的方法可以通过提出类似于医师观点的创新象征方法来精确解决多类别睡眠阶段分类问题。 (C)2018由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号