首页> 外文期刊>Expert Systems with Application >Optimization of computer aided detection systems: An evolutionary approach
【24h】

Optimization of computer aided detection systems: An evolutionary approach

机译:优化计算机辅助检测系统:一种进化方法

获取原文
获取原文并翻译 | 示例

摘要

Computer Aided Diagnosis (CAD) systems are designed to aid the radiologist in interpreting medical images. They are usually based on lesion detection and segmentation algorithms whose performance depends on a large number of parameters. While time consuming and sub-optimal, parameter values are most often selected through manual search strategies. Genetic or evolutionary algorithms (GA) are effective optimization methods that mimic biological evolution. Genetic algorithms have been shown to efficiently manage complex search spaces, and can be applied to all kinds of objective functions, including discontinuous, nondifferentiable, or highly nonlinear ones. In this study, we have adopted an evolutionary approach to the problem of parameter optimization. We show that the genetic algorithm is able to effectively converge to a better solution than manual optimization on a case study for digital breast tomosynthesis CAD. Parameter optimization was framed as a constrained optimization problem, where the function to be maximized was defined as the weighted sum of sensitivity, false positive rate and segmentation accuracy. A modified Dice coefficient was defined to assess the segmentation quality of individual lesions. Finally, all viable solutions evaluated by the GA were studied by means of exploratory data analysis techniques, such as association rules, to gain useful insights on the strength of the influence of each parameter on overall algorithm performance. We showed that this combination was able to identify multiple ranges of viable solutions with good segmentation accuracy. (C) 2018 Elsevier Ltd. All rights reserved.
机译:计算机辅助诊断(CAD)系统旨在帮助放射科医生解释医学图像。它们通常基于病变检测和分割算法,其性能取决于大量参数。尽管耗时且次优,但参数值通常是通过手动搜索策略选择的。遗传或进化算法(GA)是模仿生物进化的有效优化方法。遗传算法已被证明可以有效地管理复杂的搜索空间,并且可以应用于各种目标函数,包括不连续,不可微或高度非线性的函数。在这项研究中,我们采用了一种进化方法来解决参数优化问题。我们显示,对于数字化乳房断层合成CAD的案例研究,遗传算法能够有效地收敛到比手动优化更好的解决方案。参数优化被定义为一个约束优化问题,其中要最大化的函数定义为灵敏度,假阳性率和分割精度的加权和。定义了修改后的Dice系数以评估单个病变的分割质量。最后,通过探索性数据分析技术(例如关联规则)研究了由GA评估的所有可行解决方案,以了解每个参数对整体算法性能的影响强度。我们证明了这种组合能够以良好的细分精度识别多个范围的可行解决方案。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号