...
首页> 外文期刊>Experiments in Fluids >PIV investigation of flow behind surface mounted permeable ribs
【24h】

PIV investigation of flow behind surface mounted permeable ribs

机译:PIV研究表面安装的可渗透肋片后面的流动

获取原文
获取原文并翻译 | 示例

摘要

The flow behind surface mounted permeable rib geometries, i.e. solid, slit, split-slit and inclined split-slit ribs have been studied using flow visualization and PIV (2-C and 3-C) technique in streamwise and cross-stream measurement planes. The objective behind this study is to understand the flow structures responsible for heat transfer/mixing enhancement with simultaneous pressure penalty reduction by permeable rib geometries. The Reynolds number based on the rib height has been set equal to 5,538 and the open area ratio of permeable ribs is equal to 20%. The permeable rib geometries have shorter reattachment length in comparison to the solid rib. The maximum 41% reduction in reattachment length is observed for the inclined split-slit rib. The splitter mounted inside the slit leads to two corner vortices behind it. The corner vortices drag the flow from the primary recirculation bubble region towards the rib resulting in drop of the reattachment length. Two horseshoe vortices are present in the flow through the slit at both sides of the splitter due to the upstream flow separation. The slit inclination moves these horseshoe vortices closer to the bottom wall. A film like flow through the slit is present near the downstream corner of the inclined split-slit rib. The spanwise velocity gradient due to the splitter leads to vorticity and turbulence enhancement by vortex stretching. The inclination of the slit and the use of a splitter inside the slit are two important design parameters responsible in generation of near-wall longitudinal vortices. The flow field behind permeable ribs is dominated by vortical structures with definable critical flow patterns, i.e. node, saddle and foci. These predominant swirling flow motions contribute to the mixing enhancement behind permeable rib geometries.
机译:使用流可视化和PIV(2-C和3-C)技术在流向和跨流测量平面中研究了表面安装的可渗透肋几何结构(即实心,狭缝,裂隙和倾斜裂隙肋)背后的流动。这项研究的目的是了解通过可渗透肋的几何形状同时增强传热/混合并同时降低压力损失的流动结构。基于肋骨高度的雷诺数已设置为5538,可渗透肋骨的开口率等于20%。与实心肋相比,可渗透肋的几何形状具有较短的重新连接长度。对于倾斜的裂缝肋,可观察到最大重新安装长度减少41%。安装在狭缝内部的分离器在其后面导致两个角涡旋。角部涡流将流动从主再循环气泡区域引向肋骨,导致重新连接长度下降。由于上游流动的分离,在分流器两侧通过狭缝的流动中存在两个马蹄涡。狭缝的倾斜使这些马蹄形涡流更靠近底壁。倾斜的裂隙肋的下游角附近存在流过缝隙的薄膜状流。由分流器引起的翼展方向速度梯度通过涡旋拉伸导致涡旋和湍流增强。狭缝的倾斜度和在狭缝内部使用分流器是产生近壁纵向涡旋的两个重要设计参数。渗透性肋骨后面的流场由具有可确定的临界流型的旋涡结构所控制,即节点,鞍形和焦点。这些主要的旋流运动有助于渗透肋几何形状后面的混合增强。

著录项

  • 来源
    《Experiments in Fluids》 |2006年第2期|277-300|共24页
  • 作者单位

    Institute of Aerodynamics and Flow Technology German Aerospace Center Bunsenstrasse 10 Goettingen 37073 Germany;

    Institute of Aerodynamics and Flow Technology German Aerospace Center Bunsenstrasse 10 Goettingen 37073 Germany;

    Institute of Aerodynamics and Flow Technology German Aerospace Center Bunsenstrasse 10 Goettingen 37073 Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号