首页> 外文期刊>International Journal of High Performance Computing Applications >ACCELERATION OF FAST MULTIPOLE METHOD USING SPECIAL-PURPOSE COMPUTER GRAPE
【24h】

ACCELERATION OF FAST MULTIPOLE METHOD USING SPECIAL-PURPOSE COMPUTER GRAPE

机译:利用专用计算机图形加速快速多极方法

获取原文
获取原文并翻译 | 示例
       

摘要

We have implemented the fast multipole method (FMM) on a special-purpose computer GRAPE (GRAvity piPE). The FMM is one of the fastest approximate algorithms to calculate forces among particles. Its calculation cost scales as O(N), while the naive algorithm scales as O(N~2). Here, N is the number of particles in the system. GRAPE is hardware dedicated to the calculation of Coulombic or gravitational forces among particles. GRAPE'S calculation speed is 100-1000 times faster than that of conventional computers of the same price, though it cannot handle anything but force calculation. We can expect significant speedup by the combination of the fast algorithm and the fast hardware. However, a straightforward implementation of the algorithm actually runs on GRAPE at rather modest speed. This is because of the limited functionality of the hardware. Since GRAPE can handle particle forces only, just a small fraction of the overall calculation procedure can be put on it. The remaining part must be performed on a conventional computer connected to GRAPE. In order to take full advantage of the dedicated hardware, we modified the FMM using the pseudoparticle multipole method and Anderson's method. In the modified algorithm, multipole and local expansions are expressed by distribution of a small number of imaginary particles (pseu-doparticles), and thus they can be evaluated by GRAPE. Results of numerical experiments on ordinary GRAPE systems show that, for large-N systems (N ≥ 10~(-5)), GRAPE accelerates the FMM by a factor ranging from 3 for low accuracy (RMS relative force error ~10~(-2)) to 60 for high accuracy (RMS relative force error ~10~(-5)). Performance of the FMM on GRAPE exceeds that of Barnes-Hut treecode on GRAPE at high accuracy, in case of close-to-uniform distribution of particles. However, in the same experimental environment the treecode outperforms the FMM for inhomogeneous distribution of particles.
机译:我们已经在专用计算机GRAPE(GRAvity piPE)上实现了快速多极方法(FMM)。 FMM是计算粒子之间力的最快近似算法之一。它的计算成本按O(N)缩放,而朴素算法按O(N〜2)缩放。在此,N是系统中的粒子数。 GRAPE是专用于计算粒子之间的库仑力或重力的硬件。 GRAPE的计算速度比同等价格的传统计算机快100-1000倍,尽管它只能处理强制计算。我们可以期望通过快速算法和快速硬件的组合来显着提高速度。但是,该算法的直接实现实际上以相当适中的速度在GRAPE上运行。这是因为硬件功能有限。由于GRAPE仅能处理粒子力,因此只能在整个计算过程中使用一小部分。其余部分必须在连接到GRAPE的常规计算机上执行。为了充分利用专用硬件,我们使用伪粒子多极方法和安德森方法修改了FMM。在改进的算法中,多极扩展和局部扩展通过少量假想粒子(伪粒子)的分布来表示,因此可以通过GRAPE对其进行评估。在普通GRAPE系统上进行的数值实验结果表明,对于大型N系统(N≥10〜(-5)),GRAPE会以较低的精度(RMS相对力误差〜10〜(- 2))到60以获得高精度(RMS相对力误差〜10〜(-5))。在颗粒分布接近均匀的情况下,FMM在GRAPE上的性能在准确性上超过了GRAPE上的Barnes-Hut树代码。但是,在相同的实验环境中,树形代码的性能优于FMM,因为粒子的分布不均匀。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号