首页> 外文期刊>Experimental Mechanics >dispel4py: A Python framework for data-intensive scientific computing
【24h】

dispel4py: A Python framework for data-intensive scientific computing

机译:dispel4py:用于数据密集型科学计算的Python框架

获取原文
获取原文并翻译 | 示例

摘要

This paper presents dispel4py, a new Python framework for describing abstract stream-based workflows for distributed data-intensive applications. These combine the familiarity of Python programming with the scalability of workflows. Data streaming is used to gain performance, rapid prototyping and applicability to live observations. dispel4py enables scientists to focus on their scientific goals, avoiding distracting details and retaining flexibility over the computing infrastructure they use. The implementation, therefore, has to map dispel4py abstract workflows optimally onto target platforms chosen dynamically. We present four dispel4py mappings: Apache Storm, message-passing interface (MPI), multi-threading and sequential, showing two major benefits: a) smooth transitions from local development on a laptop to scalable execution for production work, and b) scalable enactment on significantly different distributed computing infrastructures. Three application domains are reported and measurements on multiple infrastructures show the optimisations achieved; they have provided demanding real applications and helped us develop effective training. The dispel4py.org is an open-source project to which we invite participation. The effective mapping of dispel4py onto multiple target infrastructures demonstrates exploitation of data-intensive and high-performance computing (HPC) architectures and consistent scalability.
机译:本文介绍了dispel4py,这是一个新的Python框架,用于描述分布式数据密集型应用程序基于抽象流的工作流。这些结合了Python编程的熟悉性和工作流的可伸缩性。数据流用于获得性能,快速制作原型并适用于实时观察。 dispel4py使科学家能够专注于自己的科学目标,避免分散注意力的细节,并在使用的计算基础架构上保持灵活性。因此,该实现必须将优化的抽象工作流映射到动态选择的目标平台上。我们提供了四个dispel4py映射:Apache Storm,消息传递接口(MPI),多线程和顺序,显示了两个主要好处:a)从笔记本电脑上的本地开发到生产工作的可伸缩执行的平稳过渡,以及b)可伸缩的制定在明显不同的分布式计算基础架构上。报告了三个应用程序域,并且在多个基础架构上进行的测量显示了所实现的优化;他们提供了苛刻的实际应用程序,并帮助我们开展了有效的培训。 dispel4py.org是一个开放源代码项目,我们邀请其参与。 Dispel4py在多个目标基础架构上的有效映射证明了对数据密集型和高性能计算(HPC)体系结构的利用以及一致的可伸缩性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号