首页> 外文期刊>Computing in science & engineering >Extreme Data-Intensive Scientific Computing
【24h】

Extreme Data-Intensive Scientific Computing

机译:极限数据密集型科学计算

获取原文
获取原文并翻译 | 示例

摘要

Scientific computing increasingly involves massive data; in astronomy, observations and numerical simulations are on the verge of generating petabytes. This new, data-centric computing requires a new look at computing architectures and strategies. Using Amdahl's law to characterize architectures and workloads, it's possible to use existing commodity parts to build systems that approach an ideal Amdahl machine. Modern science is approaching the point where novel computational algorithms and tools, combined with computational thinking, will become as indispensable as mathematics. This trend is being driven by the fact that scientific datasets across a range of fields are doubling in size every year, thus creating complex challenges for traditional analysis techniques. Analyses of the information contained within these datasets have already led to revolutionary breakthroughs in fields ranging from genomics to high-energy physics, encompassing every scale of the physical world. Much more remains undiscovered.
机译:科学计算越来越涉及海量数据。在天文学中,观测和数值模拟正处于生成PB的边缘。这种以数据为中心的新计算要求对计算体系结构和策略有新的了解。使用阿姆达尔定律来表征架构和工作负载,可以使用现有的商品零件来构建接近理想阿姆达尔机器的系统。现代科学正在接近新的计算算法和工具,再加上计算思想,将变得与数学一样不可或缺。这一趋势是由以下事实推动的:跨领域的科学数据集的规模每年都在成倍增长,从而给传统分析技术带来了复杂的挑战。对这些数据集中包含的信息的分析已经导致了从基因组学到高能物理等领域的革命性突破,涵盖了物理世界的各个方面。还有更多未发现的东西。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号