首页> 外文期刊>Evolving Systems >IBLStreams: a system for instance-based classification and regression on data streams
【24h】

IBLStreams: a system for instance-based classification and regression on data streams

机译:IBLStreams:用于对数据流进行基于实例的分类和回归的系统

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an approach to learning on data streams called IBLStreams. More specifically, we introduce the main methodological concepts underlying this approach and discuss its implementation under the MOA software framework. IBLStreams is an instance-based algorithm that can be applied to classification and regression problems. In comparison to model-based methods for learning on data streams, it is conceptually simple. Moreover, as an algorithm for learning in dynamically evolving environments, it has a number of desirable properties that are not, at least not as a whole, shared by currently existing alternatives. Our experimental validation provides evidence for its flexibility and ability to adapt to changes of the environment quickly, a point of utmost importance in the data stream context. At the same time, IBLStreams turns out to be competitive to state-of-the-art methods in terms of prediction accuracy. Moreover, due to its robustness, it is applicable to streams with different characteristics.
机译:本文提出了一种用于学习数据流的方法,称为IBLStreams。更具体地说,我们介绍了此方法的主要方法学概念,并讨论了在MOA软件框架下的实现方法。 IBLStreams是基于实例的算法,可以应用于分类和回归问题。与用于数据流学习的基于模型的方法相比,它在概念上很简单。此外,作为一种用于在动态变化的环境中学习的算法,它具有许多理想的特性,这些特性至少在整体上没有被当前现有的替代品共享。我们的实验验证提供了其灵活性和快速适应环境变化的能力的证据,这在数据流环境中至关重要。同时,就预测准确性而言,IBLStreams相对于最新方法具有竞争力。而且,由于其鲁棒性,它适用于具有不同特性的流。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号