首页> 外文期刊>Evolutionary computation >Genetic Programming over Context-Free Languages with Linear Constraints for the Knapsack Problem: First Results
【24h】

Genetic Programming over Context-Free Languages with Linear Constraints for the Knapsack Problem: First Results

机译:背包问题线性约束的无上下文语言遗传编程:第一个结果

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce genetic programming over context-free languages with linear constraints for combinatorial optimization, apply this method to several variants of the multidimensional knapsack problem, and discuss its performance relative to Michalewicz's genetic algorithm with penalty functions. With respect to Michalewicz's approach, we demonstrate that genetic programming over context-free languages with linear constraints improves convergence. A final result is that genetic programming over context-free languages with linear constraints is ideally suited to modeling com-plementarities between items in a knapsack problem: The more complementarities in the problem, the stronger the performance in comparison to its competitors.
机译:在本文中,我们介绍了具有线性约束的无上下文语言的遗传编程以进行组合优化,将此方法应用于多维背包问题的多个变体,并讨论了其与带有罚函数的Michalewicz遗传算法的性能。关于Michalewicz的方法,我们证明了具有线性约束的无上下文语言的遗传编程可提高收敛性。最终结果是,具有线性约束的无上下文语言的遗传编程非常适合于对背包问题中的项目之间的互补性进行建模:问题中的互补性越高,与竞争对手相比,性能越强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号