首页> 外文期刊>Evolutionary computation >How Crossover Speeds up Building Block Assembly in Genetic Algorithms
【24h】

How Crossover Speeds up Building Block Assembly in Genetic Algorithms

机译:交叉如何加速遗传算法中的构建块装配

获取原文
获取原文并翻译 | 示例

摘要

We reinvestigate a fundamental question: How effective is crossover in genetic algorithms in combining building blocks of good solutions? Although this has been discussed controversially for decades, we are still lacking a rigorous and intuitive answer. We provide such answers for royal road functions and OneMax, where every bit is a building block. For the latter, we show that using crossover makes every (mu+lambda) genetic algorithm at least twice as fast as the fastest evolutionary algorithm using only standard bit mutation, up to small-order terms and for moderate mu and lambda. Crossover is beneficial because it can capitalize on mutations that have both beneficial and disruptive effects on building blocks: crossover is able to repair the disruptive effects of mutation in later generations. Compared to mutation-based evolutionary algorithms, this makes multibit mutations more useful. Introducing crossover changes the optimal mutation rate on OneMax from 1 to (1 + root 5)/2 . 1 approximate to 1.618. This holds both for uniform crossover and k-point crossover. Experiments and statistical tests confirm that our findings apply to a broad class of building block functions.
机译:我们重新研究了一个基本问题:遗传算法中的交叉在组合良好解决方案的组成部分方面有多有效?尽管对此进行了数十年的争议性讨论,但我们仍然缺乏严格而直观的答案。我们为皇家道路功能和OneMax提供了这样的答案,其中每一点都是一个构建块。对于后者,我们证明了使用交叉使得每一个(mu + lambda)遗传算法的速度至少是仅使用标准位突变,直到小阶项以及中等mu和lambda的最快进化算法的两倍。交叉是有益的,因为它可以利用对构建基块既有有益影响又具有破坏性作用的突变:交叉能够修复后代的突变破坏性影响。与基于突变的进化算法相比,这使多位突变更有用。引入交叉将OneMax上的最佳突变率从1 / n更改为(1 + root 5)/ 2。 1 / n约为1.618 / n。这适用于均匀分频和k点分频。实验和统计测试证实,我们的发现适用于广泛的构件块功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号