首页> 外文期刊>Evolutionary computation >GAMBIT: A Parameterless Model-Based Evolutionary Algorithm for Mixed-Integer Problems
【24h】

GAMBIT: A Parameterless Model-Based Evolutionary Algorithm for Mixed-Integer Problems

机译:GAMBIT:混合整数问题的基于无参数模型的进化算法

获取原文
获取原文并翻译 | 示例

摘要

Learning and exploiting problem structure is one of the key challenges in optimization. This is especially important for black-box optimization (BBO) where prior structural knowledge of a problem is not available. Existing model-based Evolutionary Algorithms (EAs) are very efficient at learning structure in both the discrete, and in the continuous domain. In this article, discrete and continuous model-building mechanisms are integrated for the Mixed-Integer (MI) domain, comprising discrete and continuous variables. We revisit a recently introduced model-based evolutionary algorithm for the MI domain, the Genetic Algorithm for Model-Based mixed-Integer opTimization (GAMBIT). We extend GAMBIT with a parameterless scheme that allows for practical use of the algorithm without the need to explicitly specify any parameters. We furthermore contrast GAMBIT with other model-based alternatives. The ultimate goal of processing mixed dependences explicitly in GAMBIT is also addressed by introducing a new mechanism for the explicit exploitation of mixed dependences. We find that processing mixed dependences with this novel mechanism allows for more efficient optimization. We further contrast the parameterless GAMBIT with Mixed-Integer Evolution Strategies (MIES) and other state-of-the-art MI optimization algorithms from the General Algebraic Modeling System (GAMS) commercial algorithm suite on problems with and without constraints, and show that GAMBIT is capable of solving problems where variable dependences prevent many algorithms from successfully optimizing them.
机译:学习和利用问题结构是优化过程中的关键挑战之一。这对于无法获得问题的先验结构知识的黑匣子优化(BBO)尤其重要。现有的基于模型的进化算法(EA)在离散域和连续域中都非常有效地学习结构。在本文中,为混合整数(MI)域集成了离散和连续模型构建机制,其中包括离散和连续变量。我们回顾了MI域最近引入的基于模型的进化算法,即基于模型的混合整数优化(GAMBIT)的遗传算法。我们使用无参数方案扩展了GAMBIT,该方案允许算法的实际使用,而无需明确指定任何参数。我们还将GAMBIT与其他基于模型的替代方案进行对比。通过引入显式利用混合依赖关系的新机制,也可以解决在GAMBIT中明确处理混合依赖关系的最终目标。我们发现使用这种新颖的机制处理混合依赖关系可以实现更有效的优化。我们进一步将无参数GAMBIT与混合整数演化策略(MIES)和通用代数建模系统(GAMS)商业算法套件中的其他最新MI优化算法在有约束和无约束的问题上进行了对比,并证明了GAMBIT能够解决变量依赖性阻止许多算法成功优化它们的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号