首页> 外文期刊>Environmetrics >A data-driven approach to detecting change points in linear regression models
【24h】

A data-driven approach to detecting change points in linear regression models

机译:一种数据驱动的方法来检测线性回归模型中的变化点

获取原文
获取原文并翻译 | 示例

摘要

Change points appear in various types of environmental data-from univariate time series to multivariate data structures-and need to be accounted for in proper analysis and inference. The analysis of change points is challenging when no exact information about their number and locations is available, and statistical tests developed under such conditions often have low power identifying the change points. This paper provides a powerful, data-driven procedure for detecting at-most-m change points in linear regression models by adapting a sieve bootstrap approach for a modified cumulative sum statistic. The new procedure does not assume a particular dependence structure nor a particular distribution of regression residuals. It employs a data-driven selection of the order of an autoregressive model and a robust estimation of the model coefficients. Our simulation studies show a competitive performance of the new bootstrap-based procedure compared with its asymptotic counterpart. We apply the new testing procedure to address an important environmental problem in Chesapeake Bay-severe oxygen depletion-and detect two change points in the relationship between the volume of low-oxygen waters and nutrient inputs to the bay during 1985-2017.
机译:变化点出现在各种类型的环境数据中-从单变量时间序列到多元数据结构-都需要在适当的分析和推断中加以考虑。当无法获得有关变更点的数量和位置的确切信息时,对变更点的分析将具有挑战性,并且在这种情况下开发的统计测试通常无法识别变更点。本文提供了一种功能强大的数据驱动程序,可通过将筛分自举方法用于修正的累积和统计量来检测线性回归模型中最多m个变化点。新过程没有假设特定的依存关系,也没有假设回归残差的特定分布。它采用数据驱动的自回归模型阶数选择和模型系数的可靠估计。我们的模拟研究表明,与基于渐进线的新方法相比,基于引导程序的新方法具有竞争优势。我们应用新的测试程序来解决切萨皮克湾的一个重要环境问题-严重的氧气消耗-并在1985-2017年期间检测低氧水量与向海湾输入的养分之间的关​​系中的两个变化点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号