首页> 外文期刊>Environmental Science & Technology >Improved Oxygen Activation over a Carbon/Co_3O_4 Nanocomposite for Efficient Catalytic Oxidation of Formaldehyde at Room Temperature
【24h】

Improved Oxygen Activation over a Carbon/Co_3O_4 Nanocomposite for Efficient Catalytic Oxidation of Formaldehyde at Room Temperature

机译:通过碳/ CO_3O_4纳米复合材料改善氧气活化以在室温下有效地催化氧化甲醛

获取原文
获取原文并翻译 | 示例
           

摘要

Oxygen activation is a key step in the catalytic oxidation of formaldehyde (HCHO) at room temperature. In this study, we synthesized a carbon/Co_3O_4 nanocomposite (C-Co_3O_4) as a solution to the insufficient capability of pristine Co_3O_4 (P- Co_3O_4) to activate oxygen for the first time. Oxygen activation was improved via carbon preventing the agglomeration of Co_3O_4 nanoparticles, resulting in small particles (approximately 7.7 nm) and more exposed active sites (oxygen vacancies and Co~(3+)). The removal efficiency of C-Co_3O_4 for 1 ppm of HCHO remained above 90%, whereas P-Co_3O_4 was rapidly deactivated. In static tests, the CO_2 selectivity of C-Co_3O_4 was close to 100%, far exceeding that of P-Co_3O_4 (42%). Various microscopic analyses indicated the formation and interaction of a composite structure between the C and Co_3O_4 interface. The carbon composite caused a disorder on the surface lattice of Co_3O_4, constructing more oxygen vacancies than P-Co_3O_4. Consequently, the surface reducibility of C-Co_3O_4was improved, as was its ability to continuously activate oxygen and H_2O into reactive oxygen species (ROS). We speculate that accelerated production of ROS helped rapidly degrade intermediates such as dioxymethylene, formate, and carbonate into CO_2. In contrast, carbonate accumulation on P-Co_3O_4 surfaces containing less ROS may have caused P-Co_3O_4 inactivation. Compared with noble nanoparticles, this study provides a transition metal-based nanocomposite for HCHO oxidation with high efficiency, high selectivity, and low cost, which is meaningful for indoor air purification.
机译:氧活化是在室温下催化氧化甲醛(Hcho)的关键步骤。在该研究中,我们将碳/ CO_3O_4纳米复合材料(C-CO_3O_4)合成作为原始CO_3O_4(P-CO_3O_4)的不足,首次活化氧气的溶液。通过碳,通过碳改善氧气活化,防止CO_3O_4纳米颗粒的附聚,从而产生小颗粒(约7.7nm)和更暴露的活性位点(氧空位和CO〜(3+))。 C-CO_3O_4的去除效率为1ppm的Hcho仍然高于90%,而P-CO_3O_4迅速停用。在静态测试中,C-CO_3O_4的CO_2选择性接近100%,远远超过P-CO_3O_4(42%)。各种微观分析表明了C和CO_3O_4接口之间的复合结构的形成和相互作用。碳复合物在CO_3O_4的表面晶格上引起疾病,构建比p-CO_3O_4更多的氧空位。因此,C-CO_3O_4Swas的表面可还原性改善,其能够将氧气和H_2O连续地活化成反应性氧(ROS)。我们推测ROS的加速生产有助于快速降解中间体,如二氧亚甲基,甲酸盐和碳酸盐进入CO_2。相反,含有较少ROS的P-CO_3O_4表面上的碳酸酯积累可能导致P-CO_3O_4失活。该研究与贵族纳米颗粒相比,该研究提供了一种用于HCho氧化的过渡金属基纳米复合材料,具有高效率,高选择性和低成本,这对于室内空气净化是有意义的。

著录项

  • 来源
    《Environmental Science & Technology》 |2021年第6期|4054-4063|共10页
  • 作者单位

    Key Laboratory of Aerosol Chemistry & Physics State Key Laboratory of Loess and Quaternary Geology (SKLLQG) Institute of Earth Environment Chinese Academy of Sciences (CAS) Xi'an 710061 P. R China CAS Center for Excellence in Quaternary Science and Global Change Xi'an 710061 P. R. China University of Chinese Academy of Sciences Beijing 100049 China;

    Key Laboratory of Aerosol Chemistry & Physics State Key Laboratory of Loess and Quaternary Geology (SKLLQG) Institute of Earth Environment Chinese Academy of Sciences (CAS) Xi'an 710061 P. R. China CAS Center for Excellence in Quaternary Science and Global Change Xi'an 710061 P. R. China;

    Key Laboratory of Aerosol Chemistry & Physics State Key Laboratory of Loess and Quaternary Geology (SKLLQG) Institute of Earth Environment Chinese Academy of Sciences (CAS) Xi'an 710061 P. R. China CAS Center for Excellence in Quaternary Science and Global Change Xi'an 710061 P. R. China;

    Department of Science and Environmental Studies The Education University of Hong Kong Hong Kong P. R. China;

    Key Laboratory of Aerosol Chemistry & Physics State Key Laboratory of Loess and Quaternary Geology (SKLLQG) Institute of Earth Environment Chinese Academy of Sciences (CAS) Xi'an 710061 P. R China CAS Center for Excellence in Quaternary Science and Global Change Xi'an 710061 P. R China;

    Department of Civil and Environmental Engineering The Hong Kong Polytechnic University Hong Kong P. R. China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号