首页> 外文期刊>Environmental Science & Technology >A New Bioinspired Perchlorate Reduction Catalyst with Significantly Enhanced Stability via Rational Tuning of Rhenium Coordination Chemistry and Heterogeneous Reaction Pathway
【24h】

A New Bioinspired Perchlorate Reduction Catalyst with Significantly Enhanced Stability via Rational Tuning of Rhenium Coordination Chemistry and Heterogeneous Reaction Pathway

机译:通过合理调整of配位化学和非均相反应途径,显着提高稳定性的新型生物启发的高氯酸盐还原催化剂

获取原文
获取原文并翻译 | 示例
       

摘要

Rapid reduction of aqueous ClO_4~- to Cl~- by H_2 has been realized by a heterogeneous Re(hoz)_2-Pd/C catalyst integrating Re(O)(hoz)_2Cl complex (hoz = oxazolinyl-phenola-to bidentate ligand) and Pd nanopartides on carbon support, but ClO_x~- intermediates formed during reactions with concentrated ClO_4~- promote irreversible Re complex decomposition and catalyst deactivation. The original catalyst design mimics the microbial ClO_4~- reductase, which integrates Mo(MGD)_2 complex (MGD = molybdopterin guanine dinudeotide) for oxygen atom transfer (OAT). Perchlorate-reducing microorganisms employ a separate enzyme, chlorite dismutase, to prevent accumulation of the destructive ClO_2~-intermediate. The structural intricacy of MGD ligand and the two-enzyme mechanism for microbial ClO_4~- reduction inspired us to improve catalyst stability by rationally tuning Re ligand structure and adding a ClO_x~- scavenger. Two new Re complexes, Re(O)(hfe)_2Cl and Re(0)(hoz)(htz)Cl (htz = thiazolinyl-phenolato bidentate ligand), significantly mitigate Re complex decomposition by slightly lowering the OAT activity when immobilized in Pd/C. Further stability enhancement is then obtained by switching the nanoparticles from Pd to Rh, which exhibits high reactivity with ClO_x~- intermediates and thus prevents their deactivating reaction with the Re complex. Compared to Re(hoz)_2-Pd/C, the new Re(hoz)(htz)-Rh/C catalyst exhibits similar ClO_4~- reduction activity but superior stability, evidenced by a decrease of Re leaching from 37% to 0.25% and stability of surface Re speciation following the treatment of a concentrated "challenge" solution containing 1000 ppm of ClO_4~-. This work demonstrates the pivotal roles of coordination chemistry control and tuning of individual catalyst components for achieving both high activity and stability in environmental catalyst applications.
机译:通过将Re(O)(hoz)_2Cl配合物(hoz =恶唑啉基-酚醛-二齿配体)结合起来的非均相Re(hoz)_2-Pd / C催化剂实现了H_2将ClO_4〜-还原为Cl_-的目的。 Pd和Pd纳米粒子位于碳载体上,但是在与浓ClO_4〜-反应期间形成的ClO_x〜-中间体促进不可逆的Re络合物分解和催化剂失活。最初的催化剂设计模仿了微生物ClO-4-还原酶,该酶整合了Mo(MGD)_2配合物(MGD =钼蝶呤鸟嘌呤二核苷酸)用于氧原子转移(OAT)。减少高氯酸盐的微生物使用一种单独的酶,亚氯酸盐歧化酶,以防止破坏性的ClO_2〜-中间体的积累。 MGD配体的结构复杂性和微生物降解ClO_4〜-的两种酶机制激发了我们通过合理地调节Re配体结构和添加ClO_x〜-清除剂来提高催化剂稳定性的想法。两种新的Re络合物Re(O)(hfe)_2Cl和Re(0)(hoz)(htz)Cl(htz =噻唑啉基-酚基双齿配体)通过固定在Pd中的OAT活性稍微降低来显着缓解Re复合物的分解/C。然后,通过将纳米颗粒从Pd切换到Rh,可以进一步提高稳定性,Rh与ClO_x-中间体具有很高的反应活性,因此可以防止它们与Re配合物失活。与Re(hoz)_2-Pd / C相比,新型Re(hoz)(htz)-Rh / C催化剂具有相似的ClO_4〜-还原活性,但稳定性更高,这表明Re浸出率从37%降低至0.25%含有1000 ppm ClO_4〜-的浓缩“挑战”溶液处理后,表面Re形态的稳定性和稳定性。这项工作证明了协调化学控制和调节单个催化剂组分对于在环境催化剂应用中实现高活性和稳定性的关键作用。

著录项

  • 来源
    《Environmental Science & Technology》 |2016年第11期|5874-5881|共8页
  • 作者单位

    Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States,Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States;

    Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States;

    Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States,Room B-901, Hong Ta Xiao Qu, Anhai, Jinjiang, Fujian 362261, P.R. China;

    Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States,Department of Earth and Environmental Engineering, Columbia University, New York 10027, United States;

    Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States;

    Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States;

    Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:58:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号