首页> 外文学位 >Rational design of bioinspired water oxidation catalysts to understand important structural features in the mechanism of homogeneous and heterogeneous water oxidation.
【24h】

Rational design of bioinspired water oxidation catalysts to understand important structural features in the mechanism of homogeneous and heterogeneous water oxidation.

机译:合理设计生物启发性水氧化催化剂,以了解均相和非均相水氧化机理中的重要结构特征。

获取原文
获取原文并翻译 | 示例

摘要

A limiting technology needed for creation of solar fuels derived from renewable feedstock is the development of efficient water oxidation catalysts made from earth abundant materials for the oxygen evolving half-reaction (OER). My research efforts have focused on developing both inorganic and organometallic water oxidation catalysts using abundant 3d-transition metals and testing them in both homogeneous solution and heterogeneous interfaces. The most active system for water oxidation is found in nature, the photosystem II enzyme water-oxidizing complex (PSII-WOC). This universally conserved catalytic core of the enzyme is comprised of a cubical CaMn3O4 cluster with a fourth oxo-bridged Mn atom. The chemical principles that may govern catalysis by this inorganic core provide a blueprint for rational design of new robust, abundant catalysts.;In Chapter 1, a new organometallic water oxidizing catalyst, Co 4O4(py)4(OAc)4 is described in detail. This Co4O4-cubane catalyst provides considerably higher turnover rates in homogenous aqueous solution compared to previous Mn 4O4-cubane type catalysts used in heterogeneous photoelectrolysis cells, although considerably slower than the PSII-WOC. The structural importance of the M4O4 cubical subunit in the mechanism of water oxidation has been extended to cobalt systems. In Chapter 2, the catalytically inert spinel metal oxide, LiMn2O4, is converted to the isostructural lambda-MnO2 by delithiation and found to produce an active water oxidation catalyst. The retention of Mn4O 4 cubical units in this spinel structure and the more flexible lattice arising from conversion of tetrahedral O atoms to pyramidal 3-coordination are postulated as the structural features responsible for promotion to active catalyst. In Chapter 3, the Mn oxide heterogeneous catalysts are further developed in a systematic study of eight polymorphs of manganese oxides, synthesized as pure polycrystalline materials. Analysis of all eight materials, only three of which are catalytically active, reveals a correlation between activity and structure. More active polymorphs possess a greater number of longer inter-manganese separations and lower coordination number O atoms, suggesting that the presence of weak Mn-O bonds and deformable (flexible) lattice are attributes needed for catalysis. These correlations point to more reactive catalysis from sp3-hybridized O atoms at the corners of non-planar micro3-oxo (M3O) or M4O 4 cubes, vs unreactive sp2 hybridized planar micro 2-oxos. In Chapter 4, the ligand exchange kinetics of the previously developed Mn4O4L6 cubanes are explored, revealing the ability of the L=diphenylphosphinate ligands to rapidly exchange with free ligands in solution, both other diphenylphosphinates and phenylphosphonates. Throughout the thesis, the importance of designing and understanding catalysts for water oxidation in relation to their structural elements is emphasized. The work extends support to the mechanistic theory of water oxidation requiring a cubical subunit of M4O4 to provide both four oxidizing equivalents and a structural guide to O-O bond formation across an open face of the cube, and open coordination sites for O2 formation/release.
机译:产生由可再生原料制得的太阳能燃料所需要的限制技术是开发由富含地球的材料制成的高效水氧化催化剂,用于氧气释放半反应(OER)。我的研究工作集中在开发使用大量3d过渡金属的无机和有机金属水氧化催化剂,并在均相溶液和异相界面中进行测试。自然界中发现了最活跃的水氧化系统,即光系统II酶水氧化复合物(PSII-WOC)。该酶的这种普遍保守的催化核心由具有第四个氧代桥连的Mn原子的立方CaMn3O4簇组成。可能控制该无机核催化的化学原理为合理设计新型坚固耐用的催化剂提供了一个蓝图。在第一章中,详细介绍了一种新型有机金属水氧化催化剂Co 4O4(py)4(OAc)4 。与在异质光电解池中使用的以前的Mn 4O4古巴型催化剂相比,该Co4O4古巴的催化剂在均质水溶液中的转化率高得多,尽管比PSII-WOC慢得多。 M4O4立方亚基在水氧化机理中的结构重要性已扩展到钴系统。在第2章中,催化惰性的尖晶石金属氧化物LiMn2O4通过脱锂作用转化为同构的λ-MnO2,并发现其可以生产活性水氧化催化剂。 Mn4O 4立方单元在这种尖晶石结构中的保留以及由四面体O原子向锥体3配位的转化所产生的更灵活的晶格被假定为负责促进活性催化剂的结构特征。在第3章中,通过对以纯多晶材料形式合成的八种锰氧化物多晶型进行系统研究,进一步开发了Mn氧化物多相催化剂。对所有八种材料(其中只有三种具有催化活性)的分析表明,活性和结构之间存在相关性。活性更高的多晶型物具有更多的较长的锰间间隔和更低的配位数O原子,这表明存在弱的Mn-O键和可变形(柔性)晶格是催化所需的属性。这些相关性表明,与未反应的sp2杂化的平面微2-氧代相比,非平面的micro3-oxo(M3O)或M4O 4立方角处的sp3-杂化的O原子具有更高的反应催化性。在第4章中,对先前开发的Mn4O4L6古巴人的配体交换动力学进行了研究,揭示了L =二苯基次膦酸酯配体与溶液中的游离配体(其他二苯基次膦酸酯和苯基膦酸酯)快速交换的能力。在整个论文中,强调了设计和理解水氧化催化剂与其结构元素有关的重要性。这项工作扩展了对水氧化机理理论的支持,该理论要求M4O4的立方亚基既可提供四个氧化当量,又可在立方体的开放面上提供O-O键形成的结构指导,并为O2的形成/释放提供开放的配位点。

著录项

  • 作者

    Robinson, David M.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Chemistry.;Inorganic chemistry.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号