首页> 外文期刊>Journal of the American Chemical Society >Tuning the Coordination Environment in Single-Atom Catalysts to Achieve Highly Efficient Oxygen Reduction Reactions
【24h】

Tuning the Coordination Environment in Single-Atom Catalysts to Achieve Highly Efficient Oxygen Reduction Reactions

机译:调整单原子催化剂中的配位环境以实现高效的氧还原反应

获取原文
获取原文并翻译 | 示例
           

摘要

Designing atomically dispersed metal catalysts for oxygen reduction reaction (ORR) is a promising approach to achieve efficient energy conversion. Herein, we develop a template-assisted method to synthesize a series of single metal atoms anchored on porous N,S-codoped carbon (NSC) matrix as highly efficient ORR catalysts to investigate the correlation between the structure and their catalytic performance. The structure analysis indicates that an identical synthesis method results in distinguished structural differences between Fe-centered single-atom catalyst (Fe-SAs/NSC) and Co-centered/Ni-centered single-atom catalysts (Co-SAs/NSC and Ni-SAs/NSC) because of the different trends of each metal ion in forming a complex with the N,S-containing precursor during the initial synthesis process. The Fe-SAs/NSC mainly consists of a well-dispersed FeN_(4)S_(2) center site where S atoms form bonds with the N atoms. The S atoms in Co-SAs/NSC and Ni-SAs/NSC, on the other hand, form metal–S bonds, resulting in CoN_(3)S_(1) and NiN_(3)S_(1) center sites. Density functional theory (DFT) reveals that the FeN_(4)S_(2) center site is more active than the CoN_(3)S_(1) and NiN_(3)S_(1) sites, due to the higher charge density, lower energy barriers of the intermediates, and products involved. The experimental results indicate that all three single-atom catalysts could contribute high ORR electrochemical performances, while Fe-SAs/NSC exhibits the highest of all, which is even better than commercial Pt/C. Furthermore, Fe-SAs/NSC also displays high methanol tolerance as compared to commercial Pt/C and high stability up to 5000 cycles. This work provides insights into the rational design of the definitive structure of single-atom catalysts with tunable electrocatalytic activities for efficient energy conversion.
机译:设计用于氧还原反应(ORR)的原子分散金属催化剂是实现有效能量转换的一种有前途的方法。在本文中,我们开发了一种模板辅助方法来合成一系列锚定在多孔N,S掺杂碳(NSC)基质上的单个金属原子,作为高效的ORR催化剂,以研究结构与其催化性能之间的相关性。结构分析表明,相同的合成方法会导致以Fe为中心的单原子催化剂(Fe-SAs / NSC)和以​​Co为中心/ Ni中心的单原子催化剂(Co-SAs / NSC和Ni- SAs / NSC),因为每种金属离子在初始合成过程中与含N,S的前体形成络合物的趋势不同。 Fe-SAs / NSC主要由分散良好的FeN_(4)S_(2)中心部位组成,其中S原子与N原子形成键。另一方面,Co-SAs / NSC和Ni-SAs / NSC中的S原子形成金属-S键,从而形成CoN_(3)S_(1)和NiN_(3)S_(1)中心位。密度泛函理论(DFT)显示,由于电荷密度较高,FeN_(4)S_(2)中心位点比CoN_(3)S_(1)和NiN_(3)S_(1)位点更具活性,降低中间体和相关产品的能量屏障。实验结果表明,所有三种单原子催化剂都可以发挥高的ORR电化学性能,而Fe-SAs / NSC表现出最高的性能,甚至优于商用Pt / C。此外,与市售Pt / C相比,Fe-SAs / NSC还显示出较高的甲醇耐受性,并具有高达5000次循环的高稳定性。这项工作提供了对具有可调谐电催化活性的单原子催化剂最终结构的合理设计的见解,以实现有效的能量转换。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第51期|20118-20126|共9页
  • 作者单位

    Center for Clean Energy Technology School of Mathematical and Physical Sciences Faculty of Science University of Technology Sydney;

    Department of Chemistry and Collaborative Innovation Center for Nanomaterial Science and Engineering Tsinghua University;

    Department of Physics Tamkang University;

    Department of Chemistry National Taiwan University;

    Department of Chemistry National Taiwan University|Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology National Taipei University of Technology;

    College of Chemistry and Chemical Engineering Yangzhou University;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号