首页> 美国卫生研究院文献>Molecules >Electrocatalytic CO2 Reduction: From Homogeneous Catalysts to Heterogeneous-Based Reticular Chemistry
【2h】

Electrocatalytic CO2 Reduction: From Homogeneous Catalysts to Heterogeneous-Based Reticular Chemistry

机译:电催化还原二氧化碳:从均相催化剂到多相网状化学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

CO2, emitted mainly from fossil fuel combustion, is one of the major greenhouse gases. CO2 could be converted into more valuable chemical feedstocks including CO, HCOOH, HCHO, CH3OH, or CH4. To reduce CO2, catalysts were designed and their unique characteristics were utilized based on types of reaction processes, including catalytic hydrogenation, complex metal hydrides, photocatalysis, biological reduction, and electrochemical reduction. Indeed, the electroreduction method has received much consideration lately due to the simple operation, as well as environmentally friendly procedures that need to be optimized by both of the catalysts and the electrochemical process. In the past few decades, we have witnessed an explosion in development in materials science—especially in regards to the porous crystalline materials based on the strong covalent bond of the organic linkers containing light elements (Covalent organic frameworks, COFs), as well as the hybrid materials that possess organic backbones and inorganic metal-oxo clusters (Metal-organic frameworks, MOFs). Owing to the large surface area and high active site density that belong to these tailorable structures, MOFs and COFs can be applied to many practical applications, such as gas storage and separation, drug release, sensing, and catalysis. Beyond those applications, which have been abundantly studied since the 1990s, CO2 reduction catalyzed by reticular and extended structures of MOFs or COFs has been more recently turned to the next step of state-of-the-art application. In this perspective, we highlight the achievement of homogeneous catalysts used for CO2 electrochemical conversion and contrast it with the advances in new porous catalyst-based reticular chemistry. We then discuss the role of new catalytic systems designed in light of reticular chemistry in the heterogeneous-catalyzed reduction of CO2.
机译:主要通过化石燃料燃烧排放的二氧化碳是主要的温室气体之一。 CO2可以转化为更有价值的化学原料,包括CO,HCOOH,HCHO,CH3OH或CH4。为了减少二氧化碳,设计了催化剂,并根据反应过程的类型利用了其独特的特性,包括催化加氢,复杂的金属氢化物,光催化,生物还原和电化学还原。实际上,由于简单的操作以及需要通过催化剂和电化学方法两者进行优化的环境友好的程序,电还原方法近来受到了广泛的关注。在过去的几十年中,我们目睹了材料科学领域的爆炸式增长,尤其是在多孔晶体材料方面,这种材料基于含有轻元素(共价有机骨架,COF)的有机连接基的强共价键,以及具有有机主链和无机金属-氧簇(金属-有机骨架,MOF)的混合材料。由于属于这些可定制结构的大表面积和高活性位点密度,MOF和COF可以应用于许多实际应用,例如气体存储和分离,药物释放,传感和催化。除了自1990年代以来已被广泛研究的那些应用外,最近由MOF或COF的网状和扩展结构催化的CO2还原已转向下一阶段的最新应用。从这个角度出发,我们重点介绍了用于CO2电化学转化的均相催化剂的成就,并将其与基于新型多孔催化剂的网状化学的进展进行了对比。然后,我们讨论了根据网状化学设计的新型催化系统在异相催化还原CO2中的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号