首页> 外文期刊>Environmental Modelling & Software >Applying transfer function-noise modelling to characterize soil moisture dynamics: a data-driven approach using remote sensing data
【24h】

Applying transfer function-noise modelling to characterize soil moisture dynamics: a data-driven approach using remote sensing data

机译:应用传递函数噪声模型表征土壤湿度动力学:使用遥感数据的数据驱动方法

获取原文
获取原文并翻译 | 示例

摘要

The increasing availability of remotely sensed soil moisture data offers new opportunities for data-driven modelling approaches as alternatives for process-based modelling. This study presents the applicability of transfer function-noise (TFN) modelling for predicting unsaturated zone conditions. The TFN models are calibrated using SMAP L3 Enhanced surface soil moisture data. We found that soil moisture conditions are accurately represented by TFN models when exponential functions are used to define impulse-response functions. A sensitivity analysis showed the importance of using a calibrated period which is representative of the hydrological conditions for which the TFN model will be applied. The IR function parameters provide valuable information on water system characteristics, such as the total response and the response times of soil moisture to precipitation and evapotranspiration. Finally, we encourage exploring the possibilities of TFN soil moisture modelling, as predicting soil moisture conditions is promising for operational settings.
机译:远程感测的土壤湿度数据的越来越多的可用性为数据驱动的建模方法提供了新的机会,作为基于过程的建模的替代方案。该研究介绍了转移功能噪声(TFN)建模用于预测不饱和区条件的适用性。使用SMAP L3增强的表面土壤湿度数据进行校准TFN模型。我们发现,当使用指数函数来定义脉冲响应函数时,通过TFN模型准确地表示土壤湿度条件。灵敏度分析表明使用代表TFN模型的水文条件的校准期间使用校准期的重要性。 IR功能参数提供有关水系统特性的有价值的信息,例如土壤水分对沉淀和蒸散的总反应和响应时间。最后,我们鼓励探索TFN土壤水分模拟的可能性,因为预测土壤湿度条件是对操作环境的承诺。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号