首页> 外文期刊>Environmental Modelling & Software >A systematic approach for fine-tuning of fuzzy controllers applied to WWTPs
【24h】

A systematic approach for fine-tuning of fuzzy controllers applied to WWTPs

机译:用于污水处理厂的模糊控制器的微调的系统方法

获取原文
获取原文并翻译 | 示例

摘要

A systematic approach for fine-tuning fuzzy controllers has been developed and evaluated for an aeration control system implemented in a WWTP. The challenge with the application of fuzzy controllers to WWTPs is simply that they contain many parameters, which need to be adjusted for different WWTP applications. To this end, a methodology based on model simulations is used that employs three statistical methods: (ⅰ) Monte-Carlo procedure: to find proper initial conditions, (ⅱ) Identifiability analysis: to find an identifiable parameter subset of the fuzzy controller and (ⅲ) minimization algorithm: to fine-tune the identifiable parameter subset of the controller. Indeed, the initial location found by Monte-Carlo simulations provided better results than using trial and error approach when identifying parameters of the fuzzy controller. The identifiable subset was reduced to 4 parameters from a total of 33, which improved the quality of the optimization of the control system by a minimization algorithm. Overall the systematic approach considerably improved the performance of the control system as measured by the Integral Absolute Error (deviation between the set-point and the controlled variable) of the controllers. Moreover, the methodology overcomes the dependency of the initial parameter space issue typical of local identifiability analysis. All in all this systematic approach is expected to facilitate the design and application of fuzzy controllers in particular to WWTPs compared to the time-consuming and tedious trial and error approach currently used in practice.
机译:对于污水处理厂中实施的曝气控制系统,已经开发出了一种对模糊控制器进行微调的系统方法。将模糊控制器应用于污水处理厂的挑战仅在于它们包含许多参数,这些参数需要针对不同的污水处理厂应用进行调整。为此,使用了基于模型仿真的方法,该方法采用了三种统计方法:(ⅰ)蒙特卡洛程序:找到合适的初始条件;(ⅱ)可识别性分析:找到模糊控制器的可识别参数子集,以及( ⅲ)最小化算法:微调控制器的可识别参数子集。实际上,在确定模糊控制器的参数时,通过蒙特卡洛模拟找到的初始位置比使用反复试验的方法提供了更好的结果。可识别的子集从总共33个减少为4个参数,从而通过最小化算法提高了控制系统优化的质量。总体而言,通过控制器的积分绝对误差(设定值与受控变量之间的偏差)来衡量,系统方法大大改善了控制系统的性能。而且,该方法克服了局部可识别性分析中典型的初始参数空间问题的依赖性。总而言之,与目前实际使用的费时且乏味的反复试验方法相比,这种系统方法有望促进模糊控制器的设计和应用,尤其是对污水处理厂。

著录项

  • 来源
    《Environmental Modelling & Software》 |2010年第5期|670-676|共7页
  • 作者单位

    Dep. Enginyeria Quimica, Universitat de Valencia, Moliner, 50, 46100 - Burjassot, Valencia, Spain;

    Dep. Enginyeria Quimica, Universitat de Valencia, Moliner, 50, 46100 - Burjassot, Valencia, Spain;

    Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, DK-2800 Kgs Lyngby, Denmark;

    Dep. Enginyeria Quimica, Universitat de Valencia, Moliner, 50, 46100 - Burjassot, Valencia, Spain;

    Dpto. Ingenieria Hidraulica y Medio Ambiente, Universidad Politecnica de Valencia, Camino de Vera s. 46022, Valencia, Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    calibration; fuzzy logic controller; identifiability; latin hypercube sampling; systematic fine-tuning; nitrogen and phosphorus removal;

    机译:校准;模糊逻辑控制器可识别性;拉丁超立方体采样;系统的微调;脱氮除磷;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号